×

Estimation and inference of the vector autoregressive process under heteroscedasticity. (English. Russian original) Zbl 1327.62337

Theory Probab. Math. Stat. 83, 27-45 (2011); translation from Teor. Jmovirn. Mat. Stat. 83, 22-38 (2010).
Summary: In this paper we derive the asymptotic distribution of the estimator for the parameters of the vector autoregressive process of order \( p\) with an unconditionally heteroscedastic error process. The covariance matrix of the error process is modeled as a deterministic matrix function and it is estimated nonparametrically at each time point. This estimator is used for deriving inference procedures for the parameters of the vector autoregressive process.

MSC:

62H12 Estimation in multivariate analysis
62M15 Inference from stochastic processes and spectral analysis
62H10 Multivariate distribution of statistics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Donald W. K. Andrews, Laws of large numbers for dependent nonidentically distributed random variables, Econometric Theory 4 (1988), no. 3, 458 – 467. · doi:10.1017/S0266466600013396
[2] T. S. Breusch and A. R. Pagan, A simple test for heteroscedasticity and random coefficient variation, Econometrica 47 (1979), no. 5, 1287 – 1294. · Zbl 0416.62021 · doi:10.2307/1911963
[3] Peter J. Brockwell and Richard A. Davis, Time series: theory and methods, 2nd ed., Springer Series in Statistics, Springer-Verlag, New York, 1991. · Zbl 0709.62080
[4] Giuseppe Cavaliere, Unit root tests under time-varying variances, Econometric Rev. 23 (2004), no. 3, 259 – 292. · Zbl 1133.62350 · doi:10.1081/ETC-200028215
[5] Serge Darolles, Christian Gourieroux, and Joann Jasiak, Structural Laplace transform and compound autoregressive models, J. Time Ser. Anal. 27 (2006), no. 4, 477 – 503. · Zbl 1112.62090 · doi:10.1111/j.1467-9892.2006.00479.x
[6] James Davidson, Stochastic limit theory, Advanced Texts in Econometrics, The Clarendon Press, Oxford University Press, New York, 1994. An introduction for econometricians. · Zbl 0904.60002
[7] H. Drees and C. Stărică, A Simple non-Stationary Model for Stock Returns, Working paper, Chalmers University of Technology, 2002.
[8] Robert F. Engle, Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation, Econometrica 50 (1982), no. 4, 987 – 1007. · Zbl 0491.62099 · doi:10.2307/1912773
[9] R. F. Engle and J. G. Rangel, The Spline GARCH Model for Unconditional Volatility and its Global Macroeconomic Causes, Working paper, New York University and University of California, San Diego, 2004.
[10] E. F. Fama, Stock return, real activity, inflation and money, American Economic Review 71 (1981), 545-565.
[11] L. G. Godfrey, Testing against general autoregressive and moving average error models when the regressors include lagged dependent variables, Econometrica, Econometric Society 46(6) (1978), 1293-1301. · Zbl 0395.62062
[12] C. Gourieroux, J. Jasiak, and R. Sufana, The Wishart autoregressive process of multivariate stochastic volatility, J. Econometrics 150 (2009), no. 2, 167 – 181. · Zbl 1429.62397 · doi:10.1016/j.jeconom.2008.12.016
[13] W. H. Greene, Econometric Analysis, Pearson/Prentice Hall, New Jersey, 2008.
[14] B. E. Hansen, Autoregressive conditional density estimation, International Economic Review 35(3) (1994), 705-730. · Zbl 0807.62090
[15] David A. Harville, Matrix algebra: exercises and solutions, Springer-Verlag, New York, 2001. · Zbl 1076.15500
[16] D. A. Hsu, R. Miller, and D. Wichern, On the stable Paretian behavior of stock-market prices, Journal of American Statistical Association 69 (1974), 108-113. · Zbl 0289.90009
[17] C. S. Kwon and T. S. Shin, Cointegration and causality between macroeconomic variables and stock market returns, Global Finance Journal 10(1) (1999), 71-81.
[18] R. Merton, On estimating the expected return on the market: an exploratory investigation, Journal of Financial Economics 8 (1980), 323-361.
[19] Peter C. B. Phillips and Ke-Li Xu, Inference in autoregression under heteroskedasticity, J. Time Ser. Anal. 27 (2006), no. 2, 289 – 308. · Zbl 1111.62082 · doi:10.1111/j.1467-9892.2005.00466.x
[20] J. Polzehl and V. Spokoiny, Varying Coefficient GARCH Versus Local Constant Volatility Modeling: Comparison of Predictive Power, Working paper, Weierstrass Institute for Applied Analysis and Stochastics, Berlin, Germany, 2006.
[21] Michael Rockinger and Eric Jondeau, Entropy densities with an application to autoregressive conditional skewness and kurtosis, J. Econometrics 106 (2002), no. 1, 119 – 142. · Zbl 1043.62110 · doi:10.1016/S0304-4076(01)00092-6
[22] C. Stărică, Is GARCH (1,1) as Good a Model as the Nobel Prize Accolades would Imply?, Working paper, Chalmers University of Technology, 2003.
[23] Halbert White, A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity, Econometrica 48 (1980), no. 4, 817 – 838. · Zbl 0459.62051 · doi:10.2307/1912934
[24] Halbert White and Ian Domowitz, Nonlinear regression with dependent observations, Econometrica 52 (1984), no. 1, 143 – 161. · Zbl 0533.62055 · doi:10.2307/1911465
[25] Wing Hung Wong, On the consistency of cross-validation in kernel nonparametric regression, Ann. Statist. 11 (1983), no. 4, 1136 – 1141. · Zbl 0539.62046
[26] Ke-Li Xu and Peter C. B. Phillips, Adaptive estimation of autoregressive models with time-varying variances, J. Econometrics 142 (2008), no. 1, 265 – 280. · Zbl 1418.62359 · doi:10.1016/j.jeconom.2007.06.001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.