×

A new modification of the Adomian decomposition method for solving boundary value problems for higher order nonlinear differential equations. (English) Zbl 06045809

Summary: We propose a new modified recursion scheme for the resolution of multi-order and multi-point boundary value problems for nonlinear ordinary and partial differential equations by the Adomian decomposition method (ADM). Our new approach, including Duan’s convergence parameter, provides a significant computational advantage by allowing for the acceleration of convergence and expansion of the interval of convergence during calculations of the solution components for nonlinear boundary value problems, in particular for such cases when one of the boundary points lies outside the interval of convergence of the usual decomposition series. We utilize the boundary conditions to derive an integral equation before establishing the recursion scheme for the solution components. Thus we can derive a modified recursion scheme without any undetermined coefficients when computing successive solution components, whereas several prior recursion schemes have done so. This modification also avoids solving a sequence of nonlinear algebraic equations for the undetermined coefficients fraught with multiple roots, which is required to complete calculation of the solution by several prior modified recursion schemes using the ADM.

MSC:

65L10 Numerical solution of boundary value problems involving ordinary differential equations

Software:

NAPA
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Adomian, G., Stochastic Systems (1983), Academic: Academic New York · Zbl 0504.60066
[2] Adomian, G.; Rach, R., Inversion of nonlinear stochastic operators, J. Math. Anal. Appl., 91, 39-46 (1983) · Zbl 0504.60066
[3] Adomian, G., Nonlinear Stochastic Operator Equations (1986), Academic: Academic Orlando · Zbl 0614.35013
[4] Adomian, G., Nonlinear Stochastic Systems Theory and Applications to Physics (1989), Kluwer Academic: Kluwer Academic Dordrecht · Zbl 0659.93003
[5] Adomian, G.; Rach, R.; Meyers, R., An efficient methodology for the physical sciences, Kybernetes, 20, 24-34 (1991) · Zbl 0744.65039
[6] Adomian, G., Solving Frontier Problems of Physics: The Decomposition Method (1994), Kluwer Academic: Kluwer Academic Dordrecht · Zbl 0802.65122
[7] Rach, R., A new definition of the Adomian polynomials, Kybernetes, 37, 910-955 (2008) · Zbl 1176.33023
[10] Adomian, G.; Rach, R., Analytic solution of nonlinear boundary-value problems in several dimensions by decomposition, J. Math. Anal. Appl., 174, 118-137 (1993) · Zbl 0796.35017
[11] Adomian, G.; Rach, R., A new algorithm for matching boundary conditions in decomposition solutions, Appl. Math. Comput., 58, 61-68 (1993) · Zbl 0780.65045
[12] Adomian, G.; Rach, R., Modified decomposition solution of linear and nonlinear boundary-value problems, Nonlinear Anal., 23, 615-619 (1994) · Zbl 0810.34015
[13] Wazwaz, A. M., Approximate solutions to boundary value problems of higher order by the modified decomposition method, Comput. Math. Appl., 40, 679-691 (2000) · Zbl 0959.65090
[14] Wazwaz, A. M., The modified Adomian decomposition method for solving linear and nonlinear boundary value problems of 10th-order and 12th-order, Int. J. Nonlinear Sci. Numer. Simul., 1, 17-24 (2000) · Zbl 0966.65058
[15] Wazwaz, A. M., A reliable algorithm for obtaining positive solutions for nonlinear boundary value problems, Comput. Math. Appl., 41, 1237-1244 (2001) · Zbl 0983.65090
[16] Wazwaz, A. M., The numerical solution of fifth-order boundary value problems by the decomposition method, J. Comput. Appl. Math., 136, 259-270 (2001) · Zbl 0986.65072
[17] Wazwaz, A. M., The numerical solution of sixth-order boundary value problems by the modified decomposition method, Appl. Math. Comput., 118, 311-325 (2001) · Zbl 1023.65074
[18] Wazwaz, A. M., A reliable algorithm for solving boundary value problems for higher-order integro-differential equations, Appl. Math. Comput., 118, 327-342 (2001) · Zbl 1023.65150
[19] Wazwaz, A. M., The numerical solution of special fourth-order boundary value problems by the modified decomposition method, Int. J. Comput. Math., 79, 345-356 (2002) · Zbl 0995.65082
[20] Tatari, M.; Dehghan, M., The use of the Adomian decomposition method for solving multipoint boundary value problems, Phys. Scripta, 73, 672-676 (2006)
[21] Dehghan, M.; Tatari, M., Finding approximate solutions for a class of third-order non-linear boundary value problems via the decomposition method of Adomian, Int. J. Comput. Math., 87, 1256-1263 (2010) · Zbl 1191.65102
[22] Jang, B., Two-point boundary value problems by the extended Adomian decomposition method, J. Comput. Appl. Math., 219, 253-262 (2008) · Zbl 1145.65049
[23] Ebaid, A. E., Exact solutions for a class of nonlinear singular two-point boundary value problems: the decomposition method, Z. Naturforsch., 65a, 1-6 (2010)
[24] Ebaid, A., A new analytical and numerical treatment for singular two-point boundary value problems via the Adomian decomposition method, J. Comput. Appl. Math., 235, 1914-1924 (2011) · Zbl 1209.65077
[25] Al-Hayani, W., Adomian decomposition method with Green’s function for sixth-order boundary value problems, Comp. Math. Appl., 61, 1567-1575 (2011) · Zbl 1217.65162
[26] Duan, J. S., Recurrence triangle for Adomian polynomials, Appl. Math. Comput., 216, 1235-1241 (2010) · Zbl 1190.65031
[28] Cherruault, Y., Convergence of Adomian’s method, Kybernetes, 18, 31-38 (1989) · Zbl 0697.65051
[29] Rèpaci, A., Nonlinear dynamical systems: on the accuracy of Adomian’s decomposition method, Appl. Math. Lett., 3, 35-39 (1990) · Zbl 0719.93041
[30] Abbaoui, K.; Cherruault, Y., Convergence of Adomian’s method applied to differential equations, Comput. Math. Appl., 28, 103-109 (1994) · Zbl 0809.65073
[31] Gabet, L., The theoretical foundation of the Adomian method, Comput. Math. Appl., 27, 41-52 (1994) · Zbl 0805.65056
[32] Abdelrazec, A.; Pelinovsky, D., Convergence of the Adomian decomposition method for initial-value problems, Numer. Methods Partial Differ. Eqs., 27, 749-766 (2011) · Zbl 1250.65089
[33] Agarwal, R. P., Boundary Value Problems for Higher Order Differential Equations (1986), World Scientific: World Scientific Singapore · Zbl 0598.65062
[34] Rao, D. R.K. S.; Murthy, K. N.; Rao, A. S., On three-point boundary value problems associated with third order differential equations, Nonlinear Anal., 5, 669-673 (1981) · Zbl 0485.34011
[35] Murty, K. N.; Prasad, B. D.C. N., Three-point boundary value problems – existence and uniqueness, Yokohama Math. J., 29, 101-105 (1981) · Zbl 0486.34014
[36] Boucherif, A.; Al-Malki, N., Nonlinear three-point third-order boundary value problems, Appl. Math. Comput., 190, 1168-1177 (2007) · Zbl 1134.34007
[37] Duan, J. S., New recurrence algorithms for the nonclassic Adomian polynomials, Comput. Math. Appl., 62, 2961-2977 (2011) · Zbl 1232.65117
[38] Duan, J. S., New ideas for decomposing nonlinearities in differential equations, Appl. Math. Comput., 218, 1774-1784 (2011) · Zbl 1234.34013
[39] Rach, R., A convenient computational form for the Adomian polynomials, J. Math. Anal. Appl., 102, 415-419 (1984) · Zbl 0552.60061
[40] Adomian, G.; Rach, R., On composite nonlinearities and the decomposition method, J. Math. Anal. Appl., 113, 504-509 (1986) · Zbl 0617.65046
[41] Wazwaz, A. M., A new algorithm for calculating Adomian polynomials for nonlinear operators, Appl. Math. Comput., 111, 53-69 (2000) · Zbl 1023.65108
[42] Abdelwahid, F., A mathematical model of Adomian polynomials, Appl. Math. Comput., 141, 447-453 (2003) · Zbl 1027.65072
[43] Biazar, J.; Ilie, M.; Khoshkenar, A., An improvement to an alternate algorithm for computing Adomian polynomials in special cases, Appl. Math. Comput., 173, 582-592 (2006) · Zbl 1091.65053
[44] Zhu, Y.; Chang, Q.; Wu, S., A new algorithm for calculating Adomian polynomials, Appl. Math. Comput., 169, 402-416 (2005) · Zbl 1087.65528
[45] Azreg-Aı¨nou, M., A developed new algorithm for evaluating Adomian polynomials, CMES-Comput. Model. Eng. Sci., 42, 1-18 (2009) · Zbl 1357.65067
[46] Duan, J. S., An efficient algorithm for the multivariable Adomian polynomials, Appl. Math. Comput., 217, 2456-2467 (2010) · Zbl 1204.65022
[47] Duan, J. S., Convenient analytic recurrence algorithms for the Adomian polynomials, Appl. Math. Comput., 217, 6337-6348 (2011) · Zbl 1214.65064
[48] Duan, J. S.; Guo, A. P., Reduced polynomials and their generation in Adomian decomposition methods, CMES-Comput. Model. Eng. Sci., 60, 139-150 (2010) · Zbl 1231.65132
[49] Scott, M. R.; Vandevender, W. H., A comparison of several invariant imbedding algorithms for the solution of two-point boundary-value problems, Appl. Math. Comput., 1, 187-218 (1975) · Zbl 0335.65031
[50] Adomian, G.; Rach, R.; Sarafyan, D., On the solution of equations containing radicals by the decomposition method, J. Math. Anal. Appl., 111, 423-426 (1985) · Zbl 0579.60060
[51] Adomian, G.; Rach, R., Light scattering in crystals, J. Appl. Phys., 56, 2592-2594 (1984)
[52] Yang, Y. T.; Chien, S. K.; Chen, C. K., A double decomposition method for solving the periodic base temperature in convective longitudinal fins, Energy Convers. Manage., 49, 2910-2916 (2008)
[53] Yang, Y. T.; Chang, C. C.; Chen, C. K., A double decomposition method for solving the annular hyperbolic profile fins with variable thermal conductivity, Heat Transfer Eng., 31, 1165-1172 (2010)
[54] (Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (10th printing) (1972), Dover: Dover New York) · Zbl 0543.33001
[55] Adomian, G.; Rach, R., Equality of partial solutions in the decomposition method for linear or nonlinear partial differential equations, Comput. Math. Appl., 19, 9-12 (1990) · Zbl 0702.35058
[56] Adomian, G.; Rach, R., A further consideration of partial solutions in the decomposition method, Comput. Math. Appl., 23, 51-64 (1992) · Zbl 0756.35012
[57] Wazwaz, A. M., Equality of partial solutions in the decomposition mehtod for partial differential equations, Int. J. Comput. Math., 65, 293-308 (1997) · Zbl 0891.65105
[58] Chiu, C. H.; Chen, C. K., Application of the decomposition method to thermal stresses in isotropic circular fins with temperature-dependent thermal conductivity, Acta Mech., 157, 147-158 (2002) · Zbl 1027.74018
[60] Patel, A.; Serrano, S. E., Decomposition solution of multidimensional groundwater equations, J. Hydrol., 397, 202-209 (2011)
[61] Qin, X. Y.; Sun, Y. P., Approximate analytic solutions for a two-dimensional mathematical model of a packed-bed electrode using the Adomian decomposition method, Appl. Math. Comput., 215, 270-275 (2009) · Zbl 1175.65119
[62] Qin, X. Y.; Sun, Y. P., Approximate analytical solutions for a mathematical model of a tubular packed-bed catalytic reactor using an Adomian decomposition method, Appl. Math. Comput., 218, 1990-1996 (2011) · Zbl 1236.80009
[63] Rach, R.; Duan, J. S., Near-field and far-field approximations by the Adomian and asymptotic decomposition methods, Appl. Math. Comput., 217, 5910-5922 (2011) · Zbl 1209.65071
[64] Chu, H.; Zhao, Y.; Liu, Y., A MAPLE package of new ADM-Padé approximate solution for nonlinear problems, Appl. Math. Comput., 217, 7074-7091 (2011) · Zbl 1216.65085
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.