zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A detailed study of the Beddington-DeAngelis predator-prey model. (English) Zbl 06048788
Summary: The present investigation accounts for the influence of intra-specific competition among predators in the original Beddington-DeAngelis predator-prey model. We offer a detailed mathematical analysis of the model to describe some of the significant results that may be expected to arise from the interplay of deterministic and stochastic biological phenomena and processes. In particular, stability (local and global) and bifurcation (Saddle-node, Transcritical, Hopf-Andronov, Bogdanov-Takens) analysis of this model are conducted. Corresponding results from previous well known predator-prey models are compared with the current findings. Nevertheless, we also allow this model in stochastic environment with the influences of both, uncorrelated “white” noise and correlated “coloured” noise. This showing that competition among the predator population is beneficial for a number of predator-prey models by keeping them stable around its positive interior equilibrium (i.e. when both populations co-exist), under environmental stochasticity. Comparisons of these findings with the results of some earlier related investigations allow the general conclusion that predator intra-species competition benefits the predator-prey system under both deterministic and stochastic environments. Finally, an extended discussion of the ecological implications of the analytical and numerical results concludes the paper.

MSC:
92Applications of mathematics to Biology and other natural sciences
WorldCat.org
Full Text: DOI
References:
[1] Abrams, P.: The fallacies of ratio-dependent predation, Ecology, 1842 (1994)
[2] Abrams, P.; Walters, C.: Invulnerable prey and the statics and dynamics of predator -- prey interactions, Ecology 77, 1125 (1996)
[3] Afanasiev, V.; Kolmanovskii, V.; Nosov, V.: Mathematical theory of control systems design, (1996)
[4] Akcakaya, H.; Arditi, R.; Ginzburg, L.: Ratio-dependent predation: an abstraction that works, Ecology 76, No. 3, 995 (1995)
[5] Alonso, D.; Bartumeus, F.; Catalan, J.: Mutual interference between predators can give rise to Turing spatial patterns, Ecology 83, No. 1, 28 (2002)
[6] Arditi, R.; Ginzburg, L.: Coupling in predator-prey dynamics: ratio-dependence, Journal of theoretical biology 139, No. 3, 311 (1989)
[7] Bazykin, A.; Khibnik, A.; Krauskopf, B.: Nonlinear dynamics of interacting populations, (1998)
[8] Beddington, J.: Mutual interference between parasites or predators and its effect on searching efficiency, The journal of animal ecology, 331 (1975)
[9] Berezovskaya, F.; Karev, G.; Arditi, R.: Parametric analysis of the ratio-dependent predator -- prey model, Journal of mathematical biology 43, No. 3, 221 (2001) · Zbl 0995.92043 · doi:10.1007/s002850000078
[10] Cantrell, R.; Cosner, C.: On the dynamics of predator -- prey models with the beddington -- deangelis functional response, Journal of mathematical analysis and applications 257, No. 1, 206 (2001) · Zbl 0991.34046 · doi:10.1006/jmaa.2000.7343
[11] Cosner, C.; Deangelis, D.; Ault, J.; Olson, D.: Effects of spatial grouping on the functional response of predators, Theoretical population biology 56, No. 1, 65 (1999) · Zbl 0928.92031 · doi:10.1006/tpbi.1999.1414
[12] Deangelis, D.; Goldstein, R.; O’neill, R.: A model for tropic interaction, Ecology, 881 (1975)
[13] Dimitrov, D.; Kojouharov, H.: Complete mathematical analysis of predator -- prey models with linear prey growth and beddington -- deangelis functional response, Applied mathematics and computation 162, No. 2, 523 (2005) · Zbl 1057.92050 · doi:10.1016/j.amc.2003.12.106
[14] Freedman, H.: Deterministic mathematical models in population ecology, (1980) · Zbl 0448.92023
[15] Fussmann, [15] G. F.; Ellner, S. P.; Shertzer, K. W.; Jr., N. G. Hairston: Crossing the Hopf bifurcation in a live predator -- prey system, Science 290, No. 5495, 1358-1360 (2000)
[16] Gard, T.; Hallam, T.: Persistence in food webs-Lotka -- Volterra food chains, Bulletin of mathematical biology 41, No. 6, 877 (1979) · Zbl 0422.92017
[17] Gatto, M.: Some remarks of models of plankton densities in lake, American naturalist 137, No. 3, 264 (1991)
[18] Gause, G.: Experimental demonstration of Volterra’s periodic oscillations in the numbers of animals, Journal of experimental biology 12, No. 1, 44 (1935)
[19] Getz, W.: Population dynamics: a unified approach, Journal of theoretical biology 108, 623 (1984)
[20] Gikhman, I.; Skorokhod, A.: The theory of stochastic processes, (2004) · Zbl 1068.60004
[21] Gutierrez, A.: Physiological basis of ratio-dependent predator-prey theory: the metabolic pool model as a paradigm, Ecology, 1552 (1992)
[22] Haque, M.: Ratio-dependent predator -- prey models of interacting populations, Bulletin of mathematical biology 71, No. 2, 430 (2009) · Zbl 1170.92027 · doi:10.1007/s11538-008-9368-4
[23] Hassard, B.; Kazarinoff, N.; Wan, Y.: Theory and applications of Hopf bifurcation, (1981) · Zbl 0474.34002
[24] Hsu, S.; Hwang, T.; Kuang, Y.: Global analysis of the michaelis -- menten-type ratio-dependent predator -- prey system, Journal of mathematical biology 42, No. 6, 489 (2001) · Zbl 0984.92035 · doi:10.1007/s002850100079
[25] Hsu, S.; Hwang, T.; Kuang, Y.: Rich dynamics of a ratio-dependent one-prey two-predators model, Journal of mathematical biology 43, No. 5, 377 (2001) · Zbl 1007.34054 · doi:10.1007/s002850100100
[26] Huffaker, C.; Herman, S.; Shea, K.: Experimental studies on predation complex dispersion and levels of food in an acarine predator -- prey interaction, (1963)
[27] Hwang, T.: Global analysis of the predator -- prey system with beddington -- deangelis functional response, Journal of mathematical analysis and applications 281, No. 1, 395 (2003) · Zbl 1033.34052 · doi:10.1016/S0022-247X(02)00395-5
[28] Jost, C.; Arditi, R.: Identifying predator-prey processes from time-series, Theoretical population biology 57, No. 4, 325 (2000) · Zbl 0973.92035 · doi:10.1006/tpbi.2000.1463
[29] Kirk, K.: Enrichment can stabilize population dynamics: autotoxins and density dependence, Ecology 79, No. 7, 2456 (1998)
[30] Kloeden, P.; Platen, E.: Numerical solution of stochastic differential equations, (1992) · Zbl 0752.60043
[31] Kuang, Y.: Rich dynamics of gause-type ratio-dependent predator-prey system, The fields institute communications 21, 325 (1999) · Zbl 0920.92032
[32] Kuznetsov, Y.: Elements of applied bifurcation theory, (1998) · Zbl 0914.58025
[33] Leibold, M.: Resource edibility and the effects of predators and productivity on the outcome of trophic interactions, American naturalist 134, No. 6, 922 (1989)
[34] Luckinbill, L.: Coexistence in laboratory populations of paramecium aurelia and its predator didinium nasutum, Ecology, 1320 (1973)
[35] May, R.: Stability and complexity in model ecosystems with a new introduction by the author, (1973)
[36] Smith, J. Maynard: Models in ecology, (1974) · Zbl 0312.92001
[37] Persson, A.; Hansson, L.; Bronmark, C.; Lundberg, P.; Pettersson, L.; Greenberg, L.; Nilsson, P.; Nystrom, P.; Romare, P.; Tranvik, L.: Effects of enrichment on simple aquatic food webs, The American naturalist 157, No. 6, 654 (2001)
[38] E.C. Pielou, An introduction to mathematical ecology, John Wiley and Sons, 1969. · Zbl 0259.92001
[39] Renshaw, E.: Modelling biological populations in space and time, (1991) · Zbl 0754.92018
[40] Schaffer, W.; Rosenzweig, M.: Homage to the red queen. I. coevolution of predators and their victims, Theoretical population biology 14, 135 (1978) · Zbl 0383.92019
[41] Skalski, G.; Gilliam, J.: Functional responses with predator interference: viable alternatives to the Holling type II model, Ecology 82, No. 11, 3083 (2001)
[42] Sotomayor, J.: Generic bifurcations of dynamical systems, Dynamical systems, 549 (1973) · Zbl 0296.58007
[43] Tanner, J.: The stability and the intrinsic growth rates of prey and predator populations, Ecology 56, 855 (1975)
[44] Veilleux, B.: An analysis of the predatory interaction between paramecium and didinium, The journal of animal ecology, 787 (1979)
[45] C. Walters, E. Krause, W. Neill, T. Northcote, Equilibrium Models for Seasonal Dynamics of Plankton Biomass in Four Oligotrophy Lakes, Journal Canadien des Sciences Halieutiques et Aquatiques 44 1002 -- 1017.