Lohoué, Noël Comparaison des champs de vecteurs et des puissances du Laplacien sur une variété Riemannienne à courbure non positive. (French) Zbl 0605.58051 J. Funct. Anal. 61, 164-201 (1985). Some classical inequalities of Calderon-Zygmund are generalized to smooth, n-dimensional, complete, simply connected Riemannian manifolds with non-positive sectional curvature. For example, let M be such a manifold whose curvature tensor and covariant derivatives up to order two are bounded, \(\Delta\) the Laplace operator on M, \(1<r<\infty\) and X a unit vector field on M. For \(f\in C_ 0^{\infty}(M)\) \((=\) the space of smooth complex-valued functions with compact support on M), let \(\| f\|^ r_ r=\int_{M}| f(x)|^ rd\sigma (x),\) where \(d\sigma\) denotes the Riemannian measure on M. Suppose that there exists a constant \(C>0\) such that \(\| f\|_ 2\leq C\| \Delta f\|_ 2\) for any \(f\in C_ 0^{\infty}(M)\). Under these assumptions, the author proves the existence of a constant C(r) such that \((I)\quad \| X(-\Delta)^{-}f\|_ r\leq C(r)\| f\|_ r\) for any \(f\in C_ 0^{\infty}(M)\). (I) is then extended to the case in which instead of X one considers \(2\ell\) unit vector fields on M (\(\ell \geq 1)\) satisfying a certain condition. The non-Euclidean symmetric spaces of non-compact type satisfy the hypotheses that provide the validity of (I) and of its generalization. Reviewer: M.Craioveanu Cited in 32 Documents MSC: 58J99 Partial differential equations on manifolds; differential operators 58J35 Heat and other parabolic equation methods for PDEs on manifolds Keywords:inequalities of Calderon-Zygmund; Riemannian manifolds; non-positive sectional curvature × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Agmon, S., The \(L^p\) approach to the Dirichlet problem, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 13, 405-448 (1959) · Zbl 0093.10601 [2] Aubin, T., Espaces de Sobolev sur les variétés riemanniennes, Bull. Sci. Math. (2), 100, 149-173 (1976) · Zbl 0328.46030 [4] Bishop, R. L.; Crittenden, R. J., Geometry of manifolds (1964), Academic Press: Academic Press New York · Zbl 0132.16003 [5] Michel, D., Estimées des coefficients du Laplacien d’une variété riemannienne, Bull. Sci. Math. (2), 102, 15-41 (1978) · Zbl 0376.53007 [6] Debiard, A.; Gaveau, B.; Mazet, E., Publ. Res. Inst. Math. Sci., 12, 391-425 (1976-1977) · Zbl 0382.31007 [7] Dodziuk, J., Sobolev spaces of differential forms and de Rham-Hodge isomorphism, J. Differential Geom., 16, 62-73 (1981) · Zbl 0456.58001 [8] Eidelman, S. D.; Ivasisen, S. D., Trans. Moscow Soc. Math., 23, 178-242 (1970) [9] Friedman, A., Partial Differential Equations of Parabolic Type (1964), Prentice-Hall: Prentice-Hall Englewood Cliffs, N.J · Zbl 0144.34903 [11] Lohoue, N., Puissances complexes de l’opérateur de Laplace Beltrami, C. R. Acad. Sci. Paris Ser. I Math., 290, 605-608 (1980) · Zbl 0432.58021 [13] Stein, E., Topics in Harmonic Analysis Related to the Littlewood-Paley Theory, (Ann. Math. Studies (1972), Princeton Univ. Press: Princeton Univ. Press Princeton, N.J) · Zbl 0193.10502 [14] Stein, E., Singular Integrals and Differentiability Properties of Functions (1970), Princeton Univ. Press: Princeton Univ. Press Princeton, N.J · Zbl 0207.13501 [15] Stein, E.; Weiss, G., Introduction to Fourier Analysis on Euclidean Spaces (1971), Princeton Univ. Press: Princeton Univ. Press Princeton, N.J · Zbl 0232.42007 [16] Strichartz, R. S., \(L^p\) estimates for integral transforms, Trans. Amer. Math. Soc., 136, 33-50 (1969) · Zbl 0174.16402 [17] Yau, S.; Li, P.; Cheng, S. Y., On the upper estimate of the heat kernel of a complete riemannian manifold, Amer. J. Math., 103, 1021-1063 (1981) · Zbl 0484.53035 [19] Strichartz, R. S., Analysis of the Laplacian on the complete Riemannian manifold, J. Funct. Anal., 52, 48-79 (1983) · Zbl 0515.58037 [20] Cheeger, J.; Gromov, M.; Taylor, M., Fine propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifold, J. Differential Geom., 17, 15-53 (1982) · Zbl 0493.53035 [21] McKean, H. P., An upper bound to the spectrum of Δ on a manifold of nagative curvature, J. Differential Geom., 4, 359-366 (1970) · Zbl 0197.18003 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.