×

The fuzzy decision problem: An approach to the problem of testing statistical hypotheses with fuzzy information. (English) Zbl 0605.62018

The authors introduce a method for using fuzzy information in the testing of statistical hypotheses. They adopt a decision theoretic approach. As indicated by the authors, the fuzziness appears only in the initial data whereas the final decision is crisp.
Two decision procedures, the Bayesian and the minimax, are treated in detail and elucidated by examples.
Reviewer: O.Kaleva

MSC:

62F03 Parametric hypothesis testing
62C99 Statistical decision theory
03E72 Theory of fuzzy sets, etc.
Full Text: DOI

References:

[1] Buckley, J. J., Fuzzy decision making with data: Applications to statistics, Fuzzy Sets and Systems, 16, 2, 139-148 (1985) · Zbl 0584.62006
[2] Casals, M.R., Gil, M.A., and Gil, P., “On the use of Zadeh”s probabilistic definition for testing statistical hypotheses from fuzzy information”, Fuzzy Sets and Systems (accepted for publication).; Casals, M.R., Gil, M.A., and Gil, P., “On the use of Zadeh”s probabilistic definition for testing statistical hypotheses from fuzzy information”, Fuzzy Sets and Systems (accepted for publication). · Zbl 0611.62018
[3] Casals, M. R.; Gil, M. A.; Gil, P., Bayes and minimax tests in the fuzzy framework, (First LF.S.A. Congress, Vol. III (July 1985)), Parallel Session 12.4, Mallorca · Zbl 0605.62018
[4] Corral, N.; Gil, M. A., The minimum inaccuracy fuzzy estimation: An extension of the maximum likelihood principle, Stochastica, 8, 1, 63-81 (1984) · Zbl 0599.62010
[5] Ferguson, T. S., Mathematical Statistics. A Decision Theoretic Approach, (1967), Academic Press: Academic Press New York · Zbl 0153.47602
[6] Fourgeaud, C.; Fuchs, A., Statistique (1967), Dunod: Dunod Paris · Zbl 0201.51501
[7] Gil, M. A.; Corral, N.; Gil, P., The fuzzy decision problem: An approach to the point estimation problem with fuzzy information, European Journal of Operational Research, 22, 1, 26-34 (1985) · Zbl 0576.90003
[8] Goguen, J. A., \(L\)-fuzzy sets, Journal of Mathematical Analysis and Applications, 18, 145-174 (1967) · Zbl 0145.24404
[9] Hoog, R. V.; Craig, A. T., Introduction to Mathematical Statistics (1970), Macmillan: Macmillan New York
[10] Kwakernaak, H., Fuzzy random variables. I. Definitions and theorems, Information Sciences, 15, 1-29 (1978) · Zbl 0438.60004
[11] Lehmann, E. L., Testing Statistical Hypotheses (1959), Wiley: Wiley New York · Zbl 0089.14102
[12] Lindgren, B. W., Statistical Theory (1962), Macmillan: Macmillan New York · Zbl 0188.49301
[13] Lindley, D. V., Introduction to Probability Statistics (1970), Cambridge University Press · Zbl 0431.62002
[14] Negoita, C. V.; Ralescu, D. A., Applications of Fuzzy Sets to Systems Analysis (1975), Birkhhuser: Birkhhuser Basel · Zbl 0326.94002
[15] Rohatgi, V. K., An Introduction to Probability Theory and Mathematical Statistics (1976), Wiley: Wiley New York · Zbl 0354.62001
[16] Tanaka, H.; Okuda, T.; Asai, K., Fuzzy information and decision in statistical model, (Advances in Fuzzy Sets Theory and Applications (1979), North-Holland), 303-320
[17] Tanaka H., and Sommer G., “On posterior probabilities concerning a fuzzy information”, Die Betriebsivirtschaft, Stuttgart 1/77, p. 166.; Tanaka H., and Sommer G., “On posterior probabilities concerning a fuzzy information”, Die Betriebsivirtschaft, Stuttgart 1/77, p. 166.
[18] Wald, A., Statistical Decision Functions (1950), Wiley: Wiley New York · Zbl 0040.36402
[19] Zadeh, L. A., Fuzzy sets, Information and Control, 8, 338-353 (1965) · Zbl 0139.24606
[20] Zadeh, L. A., Probability measures of fuzzy events, Journal of Mathematical Analysis and Applications, 23, 421-427 (1968) · Zbl 0174.49002
[21] Zadeh, L. A., Fuzzy sets as a basis for a theory of possibility, Fuzzy Sets and Systems, 1, 1, 3-28 (1978) · Zbl 0377.04002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.