×

zbMATH — the first resource for mathematics

Stationary spherically symmetric models in stellar dynamics. (English) Zbl 0605.70008
The initial value problem of stellar dynamics - Vlasov equation, Poisson’s equation, density distribution - is investigated for the case of stationary, spherically symmetric solutions. Precise statements about the distribution function \(\phi\) are given; a factorization theorem for \(\phi\) is introduced. Some examples are given.

MSC:
70F15 Celestial mechanics
70Sxx Classical field theories
85A05 Galactic and stellar dynamics
35A08 Fundamental solutions to PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Batt, J., Global symmetric solutions of the initial value problem of stellar dynamics. J. Differential Equations 25, 342-364 (1977). · Zbl 0366.35020 · doi:10.1016/0022-0396(77)90049-3
[2] Batt, J., Recent developments in the mathematical investigation of the initial value problem of stellar dynamics and plasma physics. Ann. Nuclear Energy 7, 213-217 (1980). · doi:10.1016/0306-4549(80)90067-5
[3] Camm, G. L., Self-gravitating star systems II. Monthly Notices Royal Astronomical Society 112, 155-176 (1952). · Zbl 0049.44203
[4] Chandrasekhar, S., An introduction to the study of stellar structure. Chicago: Dover Publications 1957. · Zbl 0079.23901
[5] Eddington, A. S., The dynamical equilibrium of the stellar system. Astronom. Nachr., Jubiläumsnummer, 9-10 (1921).
[6] Emden, R., Gaskugeln. Leipzig und Berlin: Teubner 1907.
[7] Fowler, R. H., The solutions of Emden’s and similar differential equations. Monthly Notices Royal Astronomical Society 91, 63-91 (1930). · JFM 56.0389.02
[8] Fowler, R. H., Further studies of Emden’s and similar differential equations. Quarterly J. Math. Oxford Ser. 2, 259-288 (1931). · Zbl 0003.23502 · doi:10.1093/qmath/os-2.1.259
[9] Hopf, E., On Emden’s differential equation. Monthly Notices Royal Astronomical Society 91, 653-663 (1931). · Zbl 0002.10301
[10] Horst, E., On the classical solutions of the initial value problem for the unmodified non-linear Vlasov equation I. Math. Meth. Appl. Sci. 3, 229-248 (1981). · Zbl 0463.35071 · doi:10.1002/mma.1670030117
[11] Horst, E., On the classical solutions of the initial value problem for the unmodified non-linear Vlasov equation II. Math. Meth. Appl. Sci. 4, 19-32 (1982). · Zbl 0485.35079 · doi:10.1002/mma.1670040104
[12] Jeans, J. H., On the theory of star-streaming and the structure of the universe. Monthly Notices Royal Astronomical Society 76, 70-84 (1915).
[13] Jeans, J. H., Problems of cosmogony and stellar dynamics. Cambridge, University Press 1919. · JFM 47.0848.01
[14] Kurth, R., General theory of spherical self-gravitating star systems in a steady state. Astronom. Nachr. 282, 97-106 (1955). · Zbl 0065.45502 · doi:10.1002/asna.19552820302
[15] Kurth, R., Stellar orbits in globular clusters. Astronom. Nachr. 282, 241-246 (1955). · doi:10.1002/asna.19552820602
[16] Kurth, R., Introduction to the mechanics of stellar systems. London: Pergamon Press 1957. · Zbl 0084.23805
[17] Kurth, R., A global particular solution to the initial value problem of stellar dynamics. Quarterly Appl. Math. 36, 325-329 (1978). · Zbl 0391.70015
[18] Sansone, G., Sulle soluzione di Emden dell’equazione di Fowler. Rend. Mat. Roma 1, 163-176 (1940).
[19] Shiveshwarkar, S. W., Remarks on some theorems in the dynamics of a steady stellar system. Monthly Notices Royal Astronomical Society 96, 749-758 (1936). · Zbl 0014.42003
[20] Walter, W., Entire solutions of the differential equation ?u=f(u). J. Austral. Math. Soc. (Series A) 30, 366-368 (1981). · Zbl 0468.35041 · doi:10.1017/S1446788700017249
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.