×

Noncompensatory and generalized noncompensatory preference structures. (English) Zbl 0605.90003

Suppose \(X=X_ 1\times X_ 2\times X_ 3\times...\times X_ n\) is a nonempty set of alternatives and P is an asymmetric binary relation on X. We interpret P as a strict preference relation on a set of multiattributed alternatives. We define a binary relation \(P_ i\) on \(X_ i\) by \(x_ iP_ iy_ i\) if and only if (iff) \(((x_ j)_{j\neq i}),x_ i)P((x_ j)_{j\neq i},y_ i)\) for all \((x_ j)_{j\neq i}\in \prod_{j\neq i}X_ i\). P on X is said to be noncompensatory following P. C. Fishburn [Synthese 33, 393-403 (1976; Zbl 0357.90004)] iff \([x_ iP_ iy_ i\) iff \(z_ iP_ iw_ i\) and \(y_ iP_ ix_ i\) iff \(w_ iP_ iz_ i]\) imply [xPy iff zPw] i.e. when there is no tradeoff between the various attributes.
We provide a representation theorem stating necessary and sufficient conditions for P to be built additively using ”weights” assigned to each attribute. We then generalize the idea of noncompensatory preferences and say that (X;P) is a generalized noncompensatory preference structure iff \([x_ iP_ iy_ i\) iff \(z_ iP_ iw_ i\) and \(y_ iP_ ix_ i\) iff \(w_ iP_ iz_ i]\) imply [xPy implies not (wPz)] and \([x_ iP_ iy_ i\) for some \(i\in \{1,2,...,n\}\) and \(Not(z_ jP_ jw_ j)\) for all \(j\in \{1,2,...,n\}]\) imply xPy.
We show that most of the interesting properties of noncompensatory preferences are preserved using this generalized definition and study the links between these two definitions.
We provide conditions under which a generalized noncompensatory preference system can be numerically represented additively using weights on each attribute and ”veto” thresholds. As a conclusion we show how such preference structures can be used for decision-aid.

MSC:

91B08 Individual preferences
91B16 Utility theory
91B06 Decision theory

Citations:

Zbl 0357.90004
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bouyssou, D.: 1984, Approches constructives et descriptives d’aide à la décision: fondements et comparaison, unpublished doctoral dissertation, Université de Paris-Dauphine, France.
[2] Domotor, Z. and S. Stelzer: 1971, ?Representation of Finetely Additive Semi-Ordered Qualitative Probability Structures?, Journal of Mathematical Psychology 8, 145-168. · Zbl 0226.60012
[3] Fishburn, P. C.: 1969, ?Weak Qualitative Probability on Finite Sets?, The Annals of Mathematical Statistics 40, 2118-2126. · Zbl 0193.44402
[4] Fishburn, P. C.: 1974, ?Lexicographic Orders, Utilities and Decision Rules: A Survey?, Management Science 20, 1442-1471. · Zbl 0311.90007
[5] Fishburn, P. C.: 1975, ?Axioms for Lexicographic Preferences?, The Review of Economic Studies 42, 415-419. · Zbl 0326.90005
[6] Fishburn, P. C.: 1976, ?Noncompensatory Preferences?, Synthese 33, 393-403. · Zbl 0357.90004
[7] Huber, O.: 1974, ?An Axiomatic System for Multidimensional Preferences?, Theory and Decision 5, 161-184. · Zbl 0306.02025
[8] Huber, O.: 1979, ?Nontransitive Multidimensional Preferences: Theoretical Analysis of a Model?, Theory and Decision 10, 147-165. · Zbl 0393.90003
[9] Keeney, R. L. and H. Raiffa: 1976, Decisions with Multiple Objectives: Preferences and Value Tradeoffs, Wiley, New York. · Zbl 0488.90001
[10] Krantz, D. H., R. D. Luce, P. Suppes, and A. Tversky: 1971, Foundations of Measurement Vol. I, Academic Press, New York. · Zbl 0232.02040
[11] MacCrimmon, K.: 1973, ?An Overview of Multiple Objective Decision Making?, in J. L. Cochrane and M. Zeleny (eds.), Multiple Criteria Decision Making, University of South Carolina Press.
[12] Plott, C. R., J. T. Little, and R. P. Parks: 1975, ?Individual Choice When Objects Have ?Ordinal? Properties?, The Review of Economic Studies 32, 403-413. · Zbl 0326.90004
[13] Roberts, F. S.: 1979, Measurement Theory with Applications to Decision-Making, Utility and the Social Sciences, Addison-Wesley, London. · Zbl 0432.92001
[14] Roy, B.: 1968, ?Classement et choix en présence de points de vue multiples (la méthode ELECTRE)?, RIRO 8, 57-75.
[15] Roy, B.: 1971, ?Problems and Methods with Multiple Objective Functions?, Mathematical Programming 1, 239-266. · Zbl 0254.90061
[16] Roy, B.: 1974, ?Critères multiples et modélisation des préférences: l’apport des relations de surclassement?, Revue d’Economie Politique 84, 1-44.
[17] Roy, B. and P. Bertier: 1972, ?La méthode ELECTRE II - Une application au média-planning?, in M. Ross (ed.), OR ’72, Proceedings of the IFORS Conference in Dublin, North-Holland, Amsterdam, pp. 291-302.
[18] Roy, B. and D. Bouyssou: 1986, ?Comparison of Two Decision-Aid Models Applied to a Nuclear Plant Sitting Example?, EJOR 25, 200-215.
[19] Scott, D.: 1964, ?Measurement Structures and Linear Inequalities?, Journal of Mathematical Psychology 1, 233-247. · Zbl 0129.12102
[20] Vansnick, J. C.: 1986, ?On the Problem of Weights in Multiple Criteria Decision Making?, EJOR 24, 288-294. · Zbl 0579.90059
[21] Vincke, P.: 1980, ?Linear Utility Functions on Semi-Ordered Mixture Space?, Econometrica 48, 771-775. · Zbl 0435.90012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.