×

zbMATH — the first resource for mathematics

Worst-case robust design optimization under distributional assumptions. (English) Zbl 1242.76299
Summary: Presented in this paper is a novel robust design optimization (RDO) methodology. The problem is reformulated in order to relax, when required, the assumption of normality of objectives and constraints, which often underlies RDO. In the second place, taking into account engineering considerations concerning the risk associated with constraint violation, suitable estimates of tail conditional expectations are introduced in the set of robustness metrics. A computationally affordable yet accurate implementation of the proposed formulation is guaranteed by the adoption of a reduced quadrature technique to perform the uncertainty propagation. The methodology is successfully demonstrated with the aid of an industrial test case performing the sizing of a mid-range passenger aircraft.

MSC:
76N25 Flow control and optimization for compressible fluids and gas dynamics
65K10 Numerical optimization and variational techniques
Software:
MAD; NBI
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Padulo M Computational engineering design under uncertainty. An aircraft conceptual design perspective 2009
[2] Box, Designing products that are robust to the environment, Total Quality Management and Business Excellence 3 (3) pp 265– (1992) · doi:10.1080/09544129200000034
[3] Murphy, A review of robust design methods for multiple responses, Research in Engineering Design 16 pp 118– (2005) · doi:10.1007/s00163-005-0004-0
[4] Su, Automatic differentiation in robust optimization, AIAA Journal 35 (6) pp 1072– (1997) · Zbl 0888.73038 · doi:10.2514/2.196
[5] Park, Robust design: an overview, AIAA Journal 44 (1) pp 181– (2006) · doi:10.2514/1.13639
[6] Chen, Quality utility-a compromise programming approach to robust design, Journal of Mechanical Design 121 (2) pp 179– (1999) · doi:10.1115/1.2829440
[7] Das, Robustness optimization for constrained nonlinear programming problems, Engineering Optimization 32 (5) pp 585– (2000) · doi:10.1080/03052150008941314
[8] Messac, Multiobjective robust design using physical programming, Structural and Multidisciplinary Optimization 23 pp 357– (2002) · doi:10.1007/s00158-002-0196-0
[9] Jin, Lecture notes in Computer Science, in: Proceedings of Second International Conference on Evolutionary Multi-criteria Optimization pp 237– (2003) · doi:10.1007/3-540-36970-8_17
[10] Deb K Gupta H Introducing robustness in multiple-objective optimization 2004
[11] Molina-Cristobal A Parks G Clarkson P Finding robust solutions to multi-objective optimisation problems using polynomial chaos
[12] Hammersley, Monte Carlo Methods (1964) · doi:10.1007/978-94-009-5819-7
[13] Helton, Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems, Reliability Engineering and System Safety 81 (1) pp 23– (2003) · doi:10.1016/S0951-8320(03)00058-9
[14] Caflisch, Monte Carlo and quasi-Monte Carlo methods, Acta Numerica 7 pp 1– (1998) · Zbl 0949.65003 · doi:10.1017/S0962492900002804
[15] Parkinson, A general approach for robust optimal design, Journal of Mechanical Design 115 (1) pp 74– (1993) · doi:10.1115/1.2919328
[16] Cramer, Mathematical Methods of Statistics (1966)
[17] Von Mises, Les lois de probabilite pour les fonctions statistiques, Annales de l’Institut Henri Poincaré 6 pp 185– (1936)
[18] Von Mises, Sur les fonctions statistiques, Bulletin de la Société Mathématique de France 67 pp 177– (1939)
[19] Tappeta R Rao G Milanowski P Practical implementation of robust design optimization
[20] Rangavajhala, The challenge of equality constraints in robust design optimization: examination and new approach, Structural and Multidisciplinary Optimization 34 pp 381– (2007) · Zbl 1273.93075 · doi:10.1007/s00158-007-0104-8
[21] Putko M Newman P Taylor A Green L Approach for uncertainty propagation and robust design in CFD using sensitivity derivatives
[22] Padulo, Advances in Automatic Differentiation pp 271– (2008) · doi:10.1007/978-3-540-68942-3_24
[23] Eldred MS Agarwal H Perez VM Wojtkiewicz SFJ Renaud JE Investigation of reliability method formulations in DAKOTA/UQ
[24] Huyse L Free-form airfoil shape optimization under uncertainty using maximum expected value and second-order second-moment strategies 2001
[25] Rosenblatt, Remarks on a multivariate transformation, Annals of Mathematical Statistics 23 (3) pp 470– (1952) · Zbl 0047.13104 · doi:10.1214/aoms/1177729394
[26] Ditlevsen O Madsen H http://www.web.mek.dtu.dk/staff/od/books.htm 2007
[27] Youn, Selecting probabilistic approaches for reliability-based design optimization, AIAA Journal 42 (1) pp 124– (2004) · doi:10.2514/1.9036
[28] Du X Chen W Towards a better understanding of modeling feasibility robustness in engineering design
[29] Ayyub, Generalized conditional expectation for structural reliability assessment, Structural Safety 11 pp 131– (1992) · doi:10.1016/0167-4730(92)90005-8
[30] Wu, An advanced probabilistic structural analysis method for implicit performance functions, AIAA Journal 28 (9) pp 1663– (1990) · doi:10.2514/3.25266
[31] Kiureghian, Multiple design points in first and second-order reliability, Structural Safety 20 (1) pp 37– (1998) · doi:10.1016/S0167-4730(97)00026-X
[32] Mourelatos ZP Liang J An efficient unified approach for reliability and robustness in engineering design 2004
[33] Pukelsheim, The three sigma rule, The American Statistician 48 pp 88– (1994) · doi:10.2307/2684253
[34] Cantelli, Intorno ad un teorema fondamentale della teoria del rischio, Bollettino dell’Associazione degli Attuari Italiani 24 pp 1– (1910)
[35] Popescu, A semidefinite programming approach to optimal-moment bounds for convex classes of distributions, Mathematics of Operations Research 30 (3) pp 632– (2005) · Zbl 1082.60011 · doi:10.1287/moor.1040.0137
[36] Sellke, Generalized Gauss-Chebyshev inequalities for unimodal distributions, Metrika 43 (1) pp 107– (1996) · Zbl 0854.60018 · doi:10.1007/BF02613901
[37] Vysochanskij, Improvement of the unilateral 3 \(\sigma\)-rule for unimodal distributions, Doklady Akademii Nauk Ukrainy SSR, Series A pp 6– (1985) · Zbl 0564.60022
[38] Du, Efficient uncertainty analysis methods for multidisciplinary robust design, AIAA Journal 40 (3) pp 545– (2002) · doi:10.2514/2.1681
[39] Das, A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems, Structural Optimization 14 pp 63– (1997) · doi:10.1007/BF01197559
[40] Xusong X Pin W A study on risk measurements exceeding VaR: TCE, CVaR and ES 4039 4042
[41] Landsman, Tail conditional expectations for elliptical distributions, North American Actuarial Journal 7 (4) pp 55– (2003) · Zbl 1084.62512 · doi:10.1080/10920277.2003.10596118
[42] Mallows, Inequalities of Chebyshev type involving conditional expectations, Annals of Mathematical Statistics 40 pp 1922– (1969) · Zbl 0187.14903 · doi:10.1214/aoms/1177697276
[43] Cerbakova, Operations Research Proceedings pp 817– (2005)
[44] Ben-Haim, Convex Models of Uncertainty in Applied Mechanics (1990) · Zbl 0703.73100
[45] Elishakoff, Optimization and Anti-optimization of Structures Under Uncertainty (2010) · Zbl 1196.90004 · doi:10.1142/9781848164789
[46] Lewis, Robust optimal design using a second order tolerance model, Research in Engineering Design 6 (1) pp 25– (1994) · doi:10.1007/BF01588089
[47] Padulo, Novel uncertainty propagation method for robust aerodynamic design, AIAA Journal 49 (3) pp 530– (2011) · doi:10.2514/1.J050448
[48] Evans, Statistical tolerancing: the state of the art, part II, Journal of Quality Technology 7 (1) pp 1– (1975)
[49] Guenov, Advances in Collaborative Civil Aeronautical Multidisciplinary Design Optimization pp 83– (2010) · doi:10.2514/4.867279
[50] Chen, A procedure for robust design: minimizing variations caused by noise factors and control factors, Journal of Mechanical Design 118 (4) pp 478– (1996) · doi:10.1115/1.2826915
[51] Forth, An efficient overloaded implementation of forward mode automatic differentiation in MATLAB, ACM Transactions on Mathematical Software 32 (2) pp 195– (2006) · Zbl 1365.65053 · doi:10.1145/1141885.1141888
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.