zbMATH — the first resource for mathematics

A test set for stiff initial value problem solvers in the open source software R: Package deTestSet. (English) Zbl 1246.65104
Summary: We present the R package deTestSet that includes challenging test problems written as ordinary differential equations, differential algebraic equations of index up to 3 and implicit differential equations. In addition it includes 6 new codes to solve initial value problems. The R package is derived from the test set for initial value problem solvers available at http://www.dm.uniba.it/~testset which includes documentation of the test problems, experimental results from a number of proven solvers, and Fortran subroutines providing a common interface to the defining problem functions. Many of these facilities are now available in the R package deTestSet, which comprises an R interface to the test problems and to most of the Fortran solvers. The package deTestSet is free software which is distributed under the GNU general public license, as part of the R open source software project.
Reviewer: Reviewer (Berlin)

65L04 Numerical methods for stiff equations
65L05 Numerical methods for initial value problems
65L80 Numerical methods for differential-algebraic equations
65Y15 Packaged methods for numerical algorithms
34A34 Nonlinear ordinary differential equations and systems, general theory
34A09 Implicit ordinary differential equations, differential-algebraic equations
Full Text: DOI
[1] W.M. Lioen, J.J.B. de Swart, W.A. van der Veen, Test set for IVP solvers, Tech. Rep. NM-R9615, CWI, Amsterdam, 1996.
[2] F. Mazzia, C. Magherini, Test set for initial value problem solvers, release 2.4, Report 4/2008, Department of Mathematics, University of Bari, Italy, 2008. URL: http://pitagora.dm.uniba.it/ testset.
[3] T. Mathworks, Matlab release 2011b, URL: http://www.mathworks.com/.
[4] I. Wolfram Research, Mathematica Edition, Version 8.0, Wolfram, Research Inc., 2010.
[5] M.B. Monagan, K.O. Geddes, K.M. Heal, G. Labahn, S.M. Vorkoetter, J. McCarron, P. DeMarco, Maple10 Programming Guide. Maplesoft, Waterloo ON, Canada, 2005.
[6] Scilab Consortium: Scilab: The free software for numerical computation, Scilab Consortium, Digiteo, Paris, France, 2011. URL: http://www.scilab.org.
[7] J.W. Eaton, GNU Octave Manual. Network Theory Limited, 2002. ISBN: 0-9541617-2-6. URL: http://www.octave.org.
[8] R Development Core Team: R: a language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, 2011. ISBN: 3-900051-07-0. URL: http://www.R-project.org/.
[9] Soetaert, K.; Cash, J.R.; Mazzia, F., Solving differential equations in R, ISBN: 978-3-642-28069-6, (2012), Springer · Zbl 1252.65138
[10] Soetaert, K.; Petzoldt, T.; Setzer, R.W., Solving differential equations in R: package desolve, Journal of statistical software, 33, 9, 1-25, (2010), URL: http://www.jstatsoft.org/v33/i09
[11] K. Soetaert, RootSolve: nonlinear root finding, equilibrium and steady-state analysis of ordinary differential equations, 2009. R package version1.6. URL: http://CRAN.R-project.org/package=rootSolve.
[12] Soetaert, K.; Meysman, F., Reactive transport in aquatic ecosystems: rapid model prototyping in the open source software R, Environmental modelling & software, 32, 49-60, (2012)
[13] K. Soetaert, J.R. Cash, F. Mazzia, BvpSolve: solvers for boundary value problems of ordinary differential equations, 2010. R package version 1.2 URL: http://CRAN.R-project.org/package=bvpSolve. · Zbl 1293.65104
[14] Theußl, S.; Zeileis, A., Collaborative software development using R-forge, The R journal, 1, 1, 9-14, (2009), URL: http://journal.r-project.org/2009-1/RJournal_2009-1_Theussl+Zeileis.pdf
[15] Cash, J.R.; Considine, S., An MEBDF code for stiff initial value problems, ACM transactions on mathematical software, 18, 2, 142-158, (1992) · Zbl 0893.65049
[16] Hairer, E.; Wanner, G., Solving ordinary differential equations II: stiff and differential-algebraic problems, (1996), Springer-Verlag Heidelberg · Zbl 0859.65067
[17] Hairer, E.; Norsett, S.P.; Wanner, G., Solving ordinary differential equations I: nonstiff problems, (2009), Springer-Verlag Heidelberg
[18] Cash, J.R.; Karp, A.H., A variable order runge – kutta method for initial value problems with rapidly varying right-hand sides, ACM transactions on mathematical software, 16, 201-222, (1990) · Zbl 0900.65234
[19] Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P., Numerical recipes in FORTRAN 77. the art of scientific computing, (1992), Cambridge University Press · Zbl 0778.65002
[20] Petzold, L.R., Automatic selection of methods for solving stiff and nonstiff systems of ordinary differential equations, SIAM journal on scientific and statistical computing, 4, 136-148, (1983) · Zbl 0518.65051
[21] Hindmarsh, A.C., ODEPACK, a systematized collection of ODE solvers, (), 55-64
[22] Brown, P.N.; Byrne, G.D.; Hindmarsh, A.C., VODE, a variable-coefficient ODE solver, SIAM journal on scientific and statistical computing, 10, 1038-1051, (1989) · Zbl 0677.65075
[23] Brenan, K.E.; Campbell, S.L.; Petzold, L.R., Numerical solution of initial-value problems in differential – algebraic equations, SIAM: classics in applied mathematics, (1996) · Zbl 0844.65058
[24] Iavernaro, F.; Mazzia, F., Solving ordinary differential equations by generalized Adams methods: properties and implementation techniques, Applied numerical mathematics, 28, 2-4, 107-126, (1998), URL: http://dx.doi.org/10.1016/S0168-9274(98)00039-7. Eighth Conference on the Numerical Treatment of Differential Equations (Alexisbad, 1997) · Zbl 0926.65076
[25] L. Brugnano, C. Magherini, The BiM code for the numerical solution of ODEs, in: Proceedings of the 10th International Congress on Computational and Applied Mathematics (ICCAM-2002), vol. 164/165, 2004, pp. 145-158. URL: http://dx.doi.org/10.1016/j.cam.2003.09.004. · Zbl 1038.65063
[26] Brugnano, L.; Magherini, C.; Mugnai, F., Blended implicit methods for the numerical solution of DAE problems, Journal of computational and applied mathematics, 189, 1-2, 34-50, (2006), URL: http://dx.doi.org/10.1016/j.cam.2005.05.005 · Zbl 1088.65076
[27] Shampine, L.; Hiebert, K., Detecting stiffness with the fehlberg (4, 5) formulas, Computers & mathematics with applications, 3, 1, 41-46, (1977), URL: http://www.sciencedirect.com/science/article/pii/0898122177901122 · Zbl 0372.65028
[28] K. Soetaert, T. Petzoldt, R.W. Setzer, R-package deSolve, writing code in compiled languages, Package vignette, 2009. URL: http://CRAN.R-project.org/package=deSolve.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.