zbMATH — the first resource for mathematics

TRESNEI, a MATLAB trust-region solver for systems of nonlinear equalities and inequalities. (English) Zbl 1244.90224
Summary: The Matlab implementation of a trust-region Gauss-Newton method for bound-constrained nonlinear least-squares problems is presented. The solver, called TRESNEI, is adequate for zero and small-residual problems and handles the solution of nonlinear systems of equalities and inequalities. The structure and the usage of the solver are described and an extensive numerical comparison with functions from the Matlab Optimization Toolbox is carried out.
Reviewer: Reviewer (Berlin)

90C30 Nonlinear programming
Full Text: DOI
[1] Bellavia, S., Macconi, M., Morini, B.: STRSCNE: a scaled trust-region solver for constrained nonlinear equations. Comput. Optim. Appl. 28, 31–50 (2004) · Zbl 1056.90128 · doi:10.1023/B:COAP.0000018878.95983.4e
[2] Bencini, L., Fantacci, R., Maccari, L.: Analytical model for performance analysis of IEEE 802.11 DCF mechanism in multi-radio wireless networks. In: Proceedings of International Communications Conference (2010, to appear)
[3] Coleman, T.F., Li, Y.: An interior trust-region approach for nonlinear minimization subject to bounds. SIAM J. Optim. 6, 418–445 (1996) · Zbl 0855.65063 · doi:10.1137/0806023
[4] Dennis, J.E., El-Alem, M., Williamson, K.: A trust-region approach to nonlinear systems of equalities and inequalities. SIAM J. Optim. 9, 291–315 (1999) · Zbl 0957.65058 · doi:10.1137/S1052623494276208
[5] Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002) · Zbl 1049.90004 · doi:10.1007/s101070100263
[6] Dolan, E.D., Moré, J.J., Munson, T.S.: Optimality measures for performance profiles. SIAM J. Optim. 16, 891–909 (2006) · Zbl 1113.90146 · doi:10.1137/040608015
[7] Floudas, C.A., et al.: Handbook of Test Problems in Local and Global Optimization. Nonconvex Optimization and Its Applications, vol. 33. Kluwer Academic, Norwell (1999) · Zbl 0943.90001
[8] Gould, N.I.M., Orban, D., Toint, Ph.L.: CUTEr, a constrained and unconstrained testing environment, revisited. ACM Trans. Math. Soft. 29, 373–394 (2003) · Zbl 1068.90526 · doi:10.1145/962437.962439
[9] Gould, N.I.M., Toint, Ph.L.: FILTRANE: a Fortran 95 filter-trust-region package for solving nonlinear least-squares and nonlinear feasibility problems. ACM Trans. Math. Softw. 33, 3–25 (2007) · Zbl 05458460 · doi:10.1145/1206040.1206043
[10] Fletcher, R., Leyffer, S.: Nonlinear programming without a penalty function. Math. Program. 91, 239–270 (2002) · Zbl 1049.90088 · doi:10.1007/s101070100244
[11] Higham, N.J.: The matrix computation toolbox. http://www.ma.man.ac.uk/\(\sim\)higham/mctoolbox . Last modified: 13 Feb. 2008
[12] Kaiser, M., Thekale, A.: Solving nonlinear feasibility problems with expensive functions. Technical report, Universität Erlangen-Nürnberg, Germany, 2009
[13] Macconi, M., Morini, B., Porcelli, M.: Trust-region quadratic methods for nonlinear systems of mixed equalities and inequalities. Appl. Numer. Math. 59, 859–876 (2009) · Zbl 1165.65030 · doi:10.1016/j.apnum.2008.03.028
[14] Macconi, M., Morini, B., Porcelli, M.: A Gauss-Newton method for solving bound-constrained underdetermined nonlinear systems. Optim. Methods Softw. 24, 219–235 (2009) · Zbl 1181.90289 · doi:10.1080/10556780902753031
[15] Nocedal, J., Wright, S.J.: Numerical Optimization. Springer Series in Operations Research. Springer, Berlin (1999) · Zbl 0930.65067
[16] Optimization Toolbox, Matlab 7, The MathWorks, Natick, MA
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.