zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Darboux transformation and soliton solutions for the coupled cubic-quintic nonlinear Schrödinger equations in nonlinear optics. (English) Zbl 06056887
Summary: In this paper, by virtue of the Darboux transformation (DT) and symbolic computation, the quintic generalization of the coupled cubic nonlinear Schrödinger equations from twin-core nonlinear optical fibers and waveguides are studied, which describe the effects of quintic nonlinearity on the ultrashort optical pulse propagation in non-Kerr media. Lax pair of the equations is obtained and the corresponding DT is constructed. Moreover, one-, two- and three-soliton solutions are presented in the forms of modulus. Features of solitons are graphically discussed: (1) head-on and overtaking elastic collisions of the two solitons; (2) periodic attraction and repulsion of the bounded states of two solitons; (3) energy-exchanging collisions of the three solitons.

35Q55NLS-like (nonlinear Schrödinger) equations
35C08Soliton solutions of PDE
Full Text: DOI
[1] Radhakrishnan, R.; Kundu, A.; Lakshmanan, M.: Phys rev E, Phys rev E 60, 3 (1999)
[2] Porsezian, K.; Kuriakose, V. C.: Optical solitons: theoretical and experimental challenges, Phys lett A 366, 223 (2003)
[3] Hasegawa, A.; Tappert, F.: Appl phys lett, Appl phys lett 23, 142 (1973)
[4] Mollenauer, L. F.; Stolen, R. H.; Gordon, J. P.: Phys rev lett, Phys rev lett 45, 1095 (1980)
[5] Hasegawa, A.; Kodama, Y.: Solitons in optical communications, (1995) · Zbl 0840.35092
[6] Islam, M. N.: Ultrafast fiber switching devices and systems, (1992)
[7] Newell, A. C.; Moloney, J. V.: Nonlinear optics, (1992) · Zbl 1054.78001
[8] Abdullaev, F.; Darmanyan, S.; Khabibullaev, P.: Optical solitons, (1993)
[9] Zhang, J. L.; Wang, M. L.: Chaos solitons fract, Chaos solitons fract 37, 215 (2008)
[10] Skarka, V.; Berezhiani, V. I.; Miklaszewski, R.: Phys rev E, Phys rev E 56, 1080 (1997)
[11] Dattoli, G.; Orisitto, F. P.; Toree, A.: Opt lett, Opt lett 14, 456 (1989)
[12] Zhu, S. D.: Chaos solitons fract, Chaos solitons fract 34, 1608 (2007)
[13] Yan, Z. Y.: J phys soc jpn, J phys soc jpn 73, 2397 (2004)
[14] Zong, F. D.; Dai, C. Q.; Zhang, J. F.: Commun theor phys, Commun theor phys 45, 721 (2006)
[15] Kundu, A.: J math phys, J math phys 25, 3433 (1984)
[16] Levi, D.; Scimiterna, C.: J phys A, J phys A 42, 465203 (2009)
[17] Wang, M. L.; Zhang, J. L.; Li, X. Z.: Commun theor phys, Commun theor phys 50, 39 (2008)
[18] Johnson, R. S.: Proc roy soc London A, Proc roy soc London A 357, 131 (1977)
[19] Kodama, Y.: J stat phys, J stat phys 39, 597 (1985)
[20] Albuch, L.; Malomed, B. A.: Math commun simul, Math commun simul 74, 312 (2007)
[21] Hisakado, M.; Wadati, M.: J phys soc jpn, J phys soc jpn 63, 3962 (1994)
[22] Barnett, M. P.; Capitani, J. F.; Von Zur Gathen, J.; Gerhard, J.: Int J quantum chem, Int J quantum chem 100, 80 (2004)
[23] Yan, Z. Y.; Zhang, H. Q.: J phys A, J phys A 34, 1785 (2001)
[24] Das, G.; Sarma, J.: Phys plasmas, Phys plasmas 6, 4394 (1999)
[25] Ablowitz, M. J.; Kaup, D. J.; Newell, A. C.; Segur, H.: Phys rev lett, Phys rev lett 31, 125 (1973)
[26] Gu CH, Hu HS, Zhou ZX. Darboux transformation in soliton theory and its geometric applications (Shanghai Sci-Tech, Shanghai, 2005)
[27] Fan EG. Computer algebra and integrable systems (Science, Beijing, 2004)
[28] Li, J.; Zhang, H. Q.; Xu, T.; Zhang, Y. X.; Hu, W.; Tian, B.: J phys A, J phys A 40, 7643 (2007)
[29] Li YS. Soliton and integrable system (Shanghai Sci-Tech, Shanghai, 1999).
[30] Kim, W. S.; Moon, H. T.: Phys lett A, Phys lett A 266, 364 (2000)
[31] Haelterman, M.; Shepppard, A.: Phys rev E, Phys rev E 49, 3376 (1994)
[32] Yu, X.; Gao, Y. T.; Sun, Z. Y.; Liu, Y.: Phys rev E, Phys rev E 83, 056601 (2011)