×

zbMATH — the first resource for mathematics

Multiscale modeling using goal-oriented adaptivity and numerical homogenization. I: Mathematical formulation and numerical results. (English) Zbl 1243.74168
Summary: This paper is the first in this series to develop a numerical homogenization method for heterogeneous media and integrate it with goal-oriented finite element mesh adaptivity. We describe the physical application, Step and Flash Imprint Lithography, in brief and present the mathematical ideas and numerical verification. The method requires the Moore-Penrose pseudoinverse of element stiffness matrices. Algorithms for efficiently computing the pseudoinverse of sparse matrices will be presented in the second paper.
The purpose of numerical homogenization is to reduce the number of degrees of freedom, find locally optimal effective material properties, and perform goal-oriented mesh refinement. Traditionally, a finite element mesh is designed after obtaining material properties in different regions. The mesh has to resolve material discontinuities and rapid variations in the solution. In our approach, however, we generate a sequence of coarse meshes (possibly 1-irregular), and homogenize material properties on each coarse mesh element using a locally posed constrained convex quadratic optimization problem. This upscaling is done using the Moore-Penrose pseudoinverse of the linearized fine-scale element stiffness matrices, and a material-independent interpolation operator.
Numerical verification is done using a two dimensional conductivity problem with known analytical limit. Finally, we present results for two and three dimensional geometries. The results show that this method uses orders of magnitude fewer degrees of freedom to give fast and approximate solutions of the original fine-scale problem.

MSC:
74Q99 Homogenization, determination of effective properties in solid mechanics
76M50 Homogenization applied to problems in fluid mechanics
15A09 Theory of matrix inversion and generalized inverses
PDF BibTeX Cite
Full Text: DOI
References:
[1] Bailey, T.C.; Johnson, S.C.; Sreenivasan, S.V.; Ekerdt, J.G.; Willson, C.G.; Resnick, D.J., Step and flash imprint lithography: an efficient nanoscale printing technology, J. photopolymer sci. technol., 15, 3, 481-486, (2002)
[2] Colburn, M.; Johnson, S.C.; Stewart, M.D.; Damle, S.; Bailey, T.C.; Choi, B.; Wedlake, M.; Michaelson, T.B.; Sreenivasan, S.V.; Ekerdt, J.G.; Willson, C.G., Step and flash imprint lithography: a new approach to high-resolution patterning, (), 379-389
[3] Bailey, T.C.; Colburn, M.; Choi, B.J.; Grot, A.; Ekerdt, J.G.; Sreenivasan, C.G.W.S.V., Step and flash imprint lithography, (), 117-138, iSBN: 0306478587
[4] Colburn, M.; Suez, I.; Choi, B.J.; Meissl, M.; Bailey, T.; Sreenivasan, S.V.; Ekerdt, J.G.; Willson, C.G., Characterization and modeling of volumetric and mechanical properties for step and flash imprint lithography photopolymers, J. vacuum sci. technol. A: vacuum surf. films, 19, 6, 2685-2689, (2001)
[5] P.T. Bauman, Adaptive multiscale modeling of polymeric materials using goal-oriented error estimation, arlequin coupling, and goals algorithms, Ph.D. Thesis, The University of Texas at Austin, 2008.
[6] Bauman, P.T.; Oden, J.T.; Prudhomme, S., Adaptive multiscale modeling of polymeric materials with Arlequin coupling and goals algorithms, Comput. methods appl. mech. engrg., 198, 799-818, (2009) · Zbl 1229.74006
[7] E, W.; Li, X.; Vanden-Eijnden, E., Some recent progress in multiscale modeling, (), 3-22, ISBN: 3540211802 · Zbl 1419.74252
[8] Hughes, T.J.R., Multiscale phenomena – green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods, Comput. methods appl. mech. engrg., 127, 387-401, (1995) · Zbl 0866.76044
[9] Brezzi, F.; Franca, L.; Hughes, T.J.R.; Russo, A., b=∫g, Comput. methods in appl. mech. engrg., 145, (1996), 329-229 · Zbl 0904.76041
[10] Dorobantu, M.; Engquist, B., Wavelet-based numerical homogenization, SIAM J. numer. anal., 35, 2, 540-559, (1998) · Zbl 0936.65135
[11] Engquist, B.; Runborg, O., Wavelet-based numerical homogenization with applications, (), 97-148 · Zbl 0989.65117
[12] Hou, T.Y.; Wu, X.-H., A multiscale finite element method for elliptic problems in composite materials and porous media, J. comput. phys., 134, 169-189, (1997) · Zbl 0880.73065
[13] Arbogast, T., Numerical subgrid upscaling of two-phase flow in porous media, (), 35-49 · Zbl 1072.76560
[14] Knapek, S., Matrix-dependent multigrid homogenization for diffusion problems, SIAM J. sci. comput., 20, 2, 515-533, (1999) · Zbl 0926.35017
[15] Feyel, F.; Chaboche, J.-L., FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre sic/ti composite materials, Comput. methods appl. mech. engrg., 183, 3-4, 309-330, (2000) · Zbl 0993.74062
[16] Voigt, W., Ueber die beziehung zwischen den beiden elasticitstsconstanten isotroper Körper, Ann. phys., 274, 12, 573-587, (1889) · JFM 21.1039.01
[17] Reuss, A., Berechnung der fließgrenze von mischkristallen auf grund der plastizitätsbedingung fär einkristalle, ZAMM - J. appl. math. mech., 9, 1, 49-58, (1929) · JFM 55.1110.02
[18] Zohdi, T.I.; Wriggers, P., Introduction to computational micromechanics, (2005), Springer · Zbl 1085.74001
[19] Babuška, I.; Strouboulis, T., The finite element method and its reliability, (2001), Oxford University Press · Zbl 0997.74069
[20] Ainsworth, M.; Oden, J.T., A posteriori error estimation in finite element analysis, (2000), Wiley-Interscience · Zbl 1008.65076
[21] R. Becker, R. Rannacher, Weighted a posteriori error control in FE methods, in: ENUMATH-95, Paris, 1995, Proceedings of the ENUMATH-97, World Sci. Pub., 1995, pp. 18-22.
[22] Prudhomme, S.; Oden, J.T., On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors, Comput. methods appl. mech. engrg., 176, 313-331, (1999) · Zbl 0945.65123
[23] Jhurani, C.; Demkowicz, L., Multiscale modeling using goal-oriented adaptivity and numerical homogenization: part II. algorithms for moore – penrose pseudoinverse, Comput. methods appl. mech. engrg., 213-216C, 418-426, (2012) · Zbl 1243.74169
[24] Demkowicz, L.; Rachowicz, W.; Pardo, D.; Paszynski, M.; Kurtz, J.; Zdunek, A., Computing with hp-adaptive finite elements: volume II frontiers: three dimensional elliptic and Maxwell problems with applications, (2007), Chapman & Hall/CRC Press
[25] Demkowicz, L., Computing with hp-adaptive finite elements: volume I: one and two dimensional elliptic and Maxwell problems, (2006), Chapman & Hall/CRC Press
[26] L. Demkowicz, 2D hp-adaptive finite element package (2dhp90) version 2.0, Tech. Rep. ICES-02-06, Institute for Computational Engineering and Sciences, The University of Texas at Austin (January 2002). URL <http://www.ices.utexas.edu/research/reports/2002/0206.pdf>.
[27] Jikov, V.V.; Kozlov, S.M.; Oleı˘nik, O.A., Homogenization of differential operators and integral functionals, (1994), Springer-Verlag Berlin · Zbl 0801.35001
[28] D.J. Resnick, G. Schmid, M. Miller, G. Doyle, C. Jones, D. LaBrake, Step and flash imprint lithography template fabrication for emerging market applications, in: H. Watanabe (Ed.), Proceedings of SPIE Photomask and Next-Generation Lithography Mask Technology XIV, vol. 6607, 2007, p. 66070T.
[29] C.K. Jhurani, Multiscale modeling using goal-oriented adaptivity and numerical homogenization, Ph.D. thesis, The University of Texas at Austin, 2009. URL <http://users.ices.utexas.edu/∼chetan/chetan-dissertation.pdf>. · Zbl 1243.74168
[30] Resnick, D.J.; Dauksher, W.J.; Mancini, D.P.; Nordquist, K.J.; Ainley, E.S.; Gehoski, K.A.; Baker, J.H.; Bailey, T.C.; Choi, B.J.; Johnson, S.C.; Sreenivasan, S.V.; Ekerdt, J.G.; Willson, C.G., High-resolution templates for step and flash imprint lithography, (), 205-213
[31] J.E. Meiring, Mesoscale simulation of the photoresist process and hydrogel biosensor array platform indexed by shape, Ph.D. Thesis, The University of Texas at Austin, 2005.
[32] R.L. Burns, S.C. Johnson, G.M. Schmid, E.K. Kim, M.D. Dickey, J. Meiring, S.D. Burns, N.A. Stacey, C.G. Willson, D.C., Y. Wei, P. Fejes, K.A. Gehoski, D.P. Mancini, K.J. Nordquist, W.J. Dauksher, D.J. Resnick, Mesoscale modeling for SFIL simulating polymerization kinetics and densification, in: R.S. Mackay (Ed.), Emerging Lithographic Technologies VIII. Edited by Mackay, R. Scott. Proceedings of the SPIE, vol. 5374, 2004, pp. 348-360, Presented at the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference, vol. 5374, 2004, pp. 348-360.
[33] Dickey, M.D.; Willson, C.G., Kinetic parameters for step and flash imprint lithography photopolymerization, Aiche j., 52, 2, 777-784, (2006)
[34] Dickey, M.D.; Burns, R.L.; Kim, E.K.; Johnson, S.C.; Stacey, N.A.; Willson, C.G., Study of the kinetics of step and flash imprint lithography photopolymerization, Aiche j., 51, 9, 2547-2555, (2005)
[35] Johnson, S.; Burns, R.; Kim, E.K.; Dickey, M.; Schmid, G.; Meiring, J.; Burns, S.; Willson, C.G.; Convey, D.; Wei, Y.; Fejes, P.; Gehoski, K.; Mancini, D.; Nordquist, K.; Dauksher, W.J.; Resnick, D.J., Effects of etch barrier densification on step and flash imprint lithography, J. vacuum sci. technol. B: microelectron. nanometer struct., 23, 6, 2553-2556, (2005)
[36] M. Paszynski, A. Romkes, E. Collister, J. Meiring, L.F. Demkowicz, C.G. Willson, On the modeling of Step-and-Flash Imprint Lithography using molecular statics models, Tech. Rep. ICES-05-38, Institute for Computational Engineering and Sciences, The University of Texas at Austin (September, 2005). URL <http://www.ices.utexas.edu/research/reports/2005/0538.pdf>.
[37] S. Balay, W.D. Gropp, L.C. McInnes, B.F. Smith, PETSc users manual, Tech. Rep. ANL-95/11 - Revision 2.1.1, Mathematics and Computer Science Division, Argonne National Laboratory, 2001.
[38] S. Benson, L.C. McInnes, J.J. Moré, TAO users manual, Tech. Rep. ANL/MCS-TM-242, Mathematics and Computer Science Division, Argonne National Laboratory, 2000. URL <http://www.mcs.anl.gov/tao>.
[39] Humphrey, W.; Dalke, A.; Schulten, K., VMD - visual molecular dynamics, J. mol. graph., 14, 33-38, (1996)
[40] Björck, Å., Numerical methods for least squares problems, (1996), SIAM Philadelphia · Zbl 0734.65031
[41] Sherman, J.; Morrison, W.J., Adjustment of an inverse matrix corresponding to changes in the elements of a given column or a given row of the original matrix, Ann. math. statist., 20, 621, (1949)
[42] Xing, J.Z.W.; Zhang, Q.; Wang, Q., Some geometric properties of Lyapunov equation and LTI system, Automatica, 37, 313-316, (2001) · Zbl 0969.93034
[43] Antoulas, A.C., Approximation of large-scale dynamical systems, (2005), Cambridge University Press · Zbl 1112.93002
[44] Allaire, G., Shape optimization by the homogenization method, (2002), Springer · Zbl 0990.35001
[45] Hornung, U., Homogenization and porous media, (1997), Springer · Zbl 0872.35002
[46] Golub, G.H.; van Loan, C.F., Matrix computations, (1996), Johns Hopkins · Zbl 0865.65009
[47] V.S.P. Benner, Solving linear matrix equations with SLICOT, in: Proceedings of the European Control Conference, Cambridge, UK, 2003, pp. CD-ROM.
[48] Bartels, R.H.; Stewart, G.W., Solution of the matrix equation AX+XB=C, Commun. ACM, 15, 9, 820-826, (1972) · Zbl 1372.65121
[49] Moulton, J.D.; Joel, J.; Dendy, E.; Hyman, J.M., The black box multigrid numerical homogenization algorithm, J. comput. phys., 142, 1, 80-108, (1998) · Zbl 0933.76072
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.