zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Géza Freud, orthogonal polynomials and Christoffel functions. A case study. (English) Zbl 0606.42020
This voluminous paper treats one aspect of the work done by Geza Freud: the consistent use of the concept of Christoffel functions in the theory of orthogonal polynomials is highlighted. Not only did Freud himself contribute greatly to the development of the theory, but he was also the initiator and stimulator of an avalanche of publications on the subject. It is not possible to pay the respect due to all these mathematicians who have built the beautiful structure as is known nowadays (the list of references contains - apart from 72 papers due to Freud alone - some 445 references!), therefore only a paragraph-wise treatment of the ”monograph” under review will be given. After some history, notation and philosophy - in that order - the author turns his attention to the subject of polynomials orthogonal on finite intervals and on the unit circle (approx. 72 pages, crammed with information). Using as tool the Christoffel function $\lambda\sb n(d\alpha,x)$ which is nothing else but the minimum of the integrals $\int\sb{{\bbfR}}\vert P(t)\vert\sp 2d\alpha (t)$ taken over all polynomials of degree $\le n-1$ satisfying $P(x)=1$, the subjects of Tauberian theorems with remainder terms, (absolute) convergence of orthogonal Fourier series and strong Cesáro summability are looked into. This is followed by quite a number of results on the asymptotic behaviour of the $\lambda\sb n$, starting with the most recent results and some discussion on historical developments. After applications of Christoffel functions to quadrature sums, interpolation (Lagrange, Hermite-Fejer), Szegö’s theory, zeros/asymptotics for orthogonal polynomials and equiconvergence of Fourier series, the stage is set (in a section called ”farewell to orthogonal polynomials on finite intervals”) for the second part of the paper (approx. 60 pages) on orthogonal polynomials on infinite intervals. The attention is, at first, focused on so-called Freud-weights $d\alpha =w(x)dx$ with $w(x)=\exp (-Q(x))$, $x\in {\bbfR}$, where $Q>0$ is an even $C\sp 1$ function on ${\bbfR}$ such that xQ’(x) increases for $x>0$ and Q’(x)$\to \infty$ as $x\to \infty$. It is in this field, that over the past four years enormous progress (on Freud weights and generalizations) has been made by - in alphabetical order - Bauldry, Bonan, Levin (A. L.), Lubinsky, Magnus (Alphonse), Màté, Mhaskar, Nevai, Rahmanov, Saff, Sheen, Totik and Ullman. The results that are treated in the second part (covering aspects from Christoffel functions, Fourier series, Cesaro and de la Vallée Poussin means via quadrature, Lagrange interpolation to Plancherel-Rotach asymptotics) is a typical example of what happens in leaving the shelter of the compact support: the reader gets, on one hand, the impression that everything changes to quite an extend and, on the other hand, that at least 50 % stays true (albeit in a slightly modified form sometimes). Again the reader must suffer the cold shower of the speed with which a group of prolific mathematicians cranked out results; nevertheless, one gets the impression that it is doubtful whether the author has missed any of the relevant publications up to August 1985! The paper ends with a ”note added in proof” (the writing on the wall) which states that one of Freud’s conjecture on the coefficients in the recurrence relations for the orthogonal polynomials w.r.t. exponential weights has been proved between the submission of the manuscript and the revision 7 months later. There is in my opinion only one dangerous point in this case study under review: the enormous amount of material and the seemingly over increasing speed in which new developments follow, might frighten the novice who wants to enter the field of orthogonal polynomials. One thing is sure: it will not be easy to catch up with the top-specialists, but if one really seriously wants to try, this paper by Nevai sure will be as indispensable as the books on orthogonal polynomials by Freud and Szegö.
Reviewer: M.G.de Bruin

MSC:
42C05General theory of orthogonal functions and polynomials
42-02Research monographs (Fourier analysis)
42A20Convergence and absolute convergence of Fourier and trigonometric series
40G05Cesàro, Euler, Nörlund and Hausdorff methods
40F05Absolute and strong summability
WorldCat.org
Full Text: DOI
References:
[1] Aczél, J.: Eine bemerkung über die charaktereisierung der ”klassischen” orthogonalpolynome. Acta math. Acad. sci. Hungar. 4, 315-321 (1953) · Zbl 0051.30401
[2] Agranovich, Z. S.; Marchenko, V. A.: The inverse problem of scattering theory. (1963) · Zbl 0117.06003
[3] Akhiezer, N. I.: Orthogonal polynomials on general intervals. Soviet math. Dokl. 1, 989-992 (1960) · Zbl 0101.29205
[4] Akhiezer, N. I.: On the weighted approximation of continuous functions by polynomials on the entire real axis. Amer. math. Soc. transl., ser. 2 22, 95-137 (1962) · Zbl 0119.05604
[5] Akhiezer, N. I.: Lektures on approximation theory. (1965)
[6] Akhiezer, N. I.: The classical moment problem. (1965) · Zbl 0135.33803
[7] Akhiezer, N. I.: Elements of the theorey of elliptic functions. (1970)
[8] Akhiezer, N. I.; Krein, M. G.: Some questions in the theory of moments. Transl. math. Monogr. 2 (1962) · Zbl 0117.32702
[9] Alexits, G.: On almost everywhere convergence and summability of series in orthogonal polynomials. Acta sci. Math. (Szeged) 12, 223-225 (1950) · Zbl 0035.33401
[10] Alexits, G.: Convergence problems of orthogonal series. (1961) · Zbl 0098.27403
[11] Alexits, G.; Králik, D.: Über die approximation in starken sinne. Acta sci. Math. (Szeged) 26, 93-101 (1965) · Zbl 0133.02603
[12] Al-Jarrah, R.: Error estimates for Gauss-Jacobi quadrature formulae with weights having the whole real line as their support. J. approx. Theory 30, 309-314 (1980) · Zbl 0457.41026
[13] Al-Salam, W.; Allaway, Wm; Askey, R.: Sieved ultraspherical polynomials. Trans. amer. Math. soc. 284, 39-55 (1984) · Zbl 0547.33005
[14] G. Andrews and R. Askey, Classical orthogonal polynomials, in ”Orthogonal Polynomials and Their Applications” (C. Brezinski et al., Eds.), Lecture Notes in Mathematics, Springer-Verlag, Berlin, in press. · Zbl 0596.33016
[15] Aptekarev, A. I.: Asymptotic properties of polynomials orthogonal on a system of arcs and periodic movements of Toda chains. Mat. sb. 125, No. 167, 231-258 (1984)
[16] Arestov, V. A.: On integral inequalities for trigonometric polynomials and their derivatives. Izv. akad. Nauk SSSR ser. Mat. 45, 3-22 (1981)
[17] Askey, R.: On some problems posed by Karlin and Szego concerning orthogonal polynomials. Boll. un. Mat. ital. 20, 125-127 (1965) · Zbl 0127.03102
[18] Askey, R.: Linearization of the product of orthogonal polynomials. Problems in analysis, 223-228 (1970) · Zbl 0212.41001
[19] Askey, R.: Proposed problems. Proceedings, conf. Constructive th. Functions, 533 (1972)
[20] Askey, R.: Mean convergence of orthogonal series and Lagrange interpolation. Acta math. Acad. sci. Hungar. 23, 71-85 (1972) · Zbl 0253.41003
[21] Askey, R.: Summability of Jacobi series. Trans. amer. Math. soc. 179, 71-84 (1973) · Zbl 0268.33015
[22] Askey, R.: Orthogonal polynomials and special functions. CBMS-NSF conference series 21 (1975)
[23] Askey, R.; Gaspar, G.: Positive Jacobi polynomial sums, II. Amer. J. Math. 98, 709-737 (1976) · Zbl 0355.33005
[24] Askey, R.; Ismail, M.: The Rogers q-ultraspherical polynomials. Approximation theory III, 175-182 (1980) · Zbl 0479.33013
[25] Askey, R.; Ismail, M.: A generalization of ultraspherical polynomials. Studies in pure mathematics, 55-78 (1983)
[26] Askey, R.; Ismail, M.: Recurrence relations, continued fractions and orthogonal polynomials. Memoirs amer. Math. soc. 300 (1984) · Zbl 0548.33001
[27] R. Askey and D. Shukla, Sieved Jacobi polynomials, to appear.
[28] Askey, R.; Wainger, S.: Mean convergence of expansions in Laguerre and Hermite series. Amer. J. Math. 87, 695-708 (1965) · Zbl 0125.31301
[29] Askey, R.; Wainger, S.: A dual convolution structure for Jacobi polynomials. Orthogonal polynomials and their continuous analogues, 25-36 (1967)
[30] Askey, R.; Wilson, J.: A set of orthogonal polynomials that generalize the racah coefficients of 6-j symbols. SIAM J. Math. anal. 10, 1008-1016 (1979) · Zbl 0437.33014
[31] Askey, R.; Wilson, J.: Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials. Memoirs amer. Math. soc. 319 (1985) · Zbl 0572.33012
[32] Skey, R.; Wilson, J.: A set of hypergeometric orthogonal poynomials. SIAM J. Math. anal. 13, 651-655 (1982) · Zbl 0496.33007
[33] Askey, R.; Wimp, J.: Associated Laguerre and Hermite polynomials. Proc. roy. Soc. Edinburgh sect. A 96, 15-37 (1984) · Zbl 0547.33006
[34] Atkinson, F. V.: Discrete and continuous boundary problems. (1964) · Zbl 0117.05806
[35] Avron, J.; Simon, B.: Singular continuous spectrum for a class of almost periodic Jacobi matrices. Bull. amer. Math. soc. (N.S.) 6, 81-85 (1982) · Zbl 0491.47014
[36] Badkov, V. M.: Convergence in the mean and almost everywhere of Fourier series in polynomials orthogonal on an interval. Math. USSR-sb. 24, 223-256 (1974) · Zbl 0318.42011
[37] Badkov, V. M.: Approximation properties of Fourier series in orthogonal polynomials. Russian math. Surveys 33, 53-117 (1978) · Zbl 0413.42014
[38] Balázs, J.; Turán, P.: Notes on interpolation, VIII. Acta math. Acad. sci. Hungar. 12, 469-474 (1961) · Zbl 0100.28304
[39] Bank, E.; Ismail, M.: The attractive Coulomb potential polynomials. Constructive approximation 1, 103-119 (1985) · Zbl 0584.42016
[40] . Higher transcendental functions 1--3 (1953)
[41] Bauldry, W. C.: Estimates of Christoffel functions of generalized freud type weights. J. approx. Theory 46, 217-229 (1986) · Zbl 0626.42014
[42] Bauldry, W. C.: Orthogonal polynomials associated with exponential weights. Ph.d. dissertation (1985)
[43] W. C. Bauldry, A. Máté and P. Nevai, Asymptotics for the solutions of systems of smooth recurrence equations, manuscript.
[44] Baxter, G.: A convergence equivalence related to polynomials orthogonal on the unit circle. Trans. amer. Math. soc. 99, 471-487 (1961) · Zbl 0116.35705
[45] Baxter, G.: A norm inequality for a finite-section Wiener-Hopf equation. Illinois J. Math. 7, 97-103 (1963) · Zbl 0113.09101
[46] Bernstein, S. N.: Sur la meilleure approximation de |x| par des polynomes de degrés donnés dans un segment finit. Acta math. 37, 1-57 (1913) · Zbl 44.0475.01
[47] Bernstein, S. N.: Sur la convergence absolue des séries trigonométrique. CR acad. Sci. Paris 158, 1661-1663 (1914) · Zbl 45.0409.01
[48] Bernstein, S. N.: Sur LES polynômes orthogonaux relatifs à un segment fini, I. J. math. Pures appl. 9, 127-177 (1930) · Zbl 56.0947.04
[49] Bernstein, S. N.: Sur LES polynômes orthogonaux relatifs à un segment fini, II. J. math. Pures appl. 10, 216-286 (1931) · Zbl 0003.00702
[50] Bernstein, S. N.: Collected works. (1952)
[51] Bessis, D.: A new method in the combinatorics of the topological expansion. Comm. math. Phys. 69, 147-163 (1979)
[52] Bessis, D.; Itzykson, C.; Zuber, J. B.: Quantum field theory techniques in graphical enumeration. Adv. in appl. Math. 1, 109-157 (1980) · Zbl 0453.05035
[53] Blumenthal, O.: Über die entwicklung einer willkürlich funktion nach den nennern des kettenbruches für $\propto $[ f({$\xi$}) (z-${\xi})] d{\xi}$. Dissertation (1898)
[54] Bohr, H.: A general theorem on the integral of a trigonometric polynomial. Collected mathematical works, 273-288 (1952)
[55] Bojanic, R.; Freud, G.: Weighted polynomial approximation and interpolation in the real line. (1977)
[56] Bonan, S. S.: Weighted mean convergence of Lagrange interpolation. Ph.d. dissertation (1982)
[57] Bonan, S. S.: Applications of G. Freud’s theory, I. Approximation theory, IV, 347-351 (1984)
[58] Bonan, S. S.; Clark, D. S.: Estimates of orthogonal polynomials with weight $exp(-xm)$, m an even positive integer. J. approx. Theory 46, 408-410 (1986) · Zbl 0619.33007
[59] Bonan, S. S.; Nevai, P.: Orthogonal polynomials and their derivatives, I. J. approx. Theory 40, 134-147 (1984) · Zbl 0533.42015
[60] S. S. Bonan, D. S. Lubinsky and P. Nevai, Orhogonal polynomials and their derivatives, II, SIAM J. Math. Anal. in press. · Zbl 0638.42023
[61] Brezinski, C.; Draux, A.; Magnus, A. P.; Maroni, P.; Ronveaux, A.: Orthogonal polynomials and their applications (Laguerre symposium). Lecture notes in mathematics (1985)
[62] Bustoz, J.; Ismail, M.: The associated ultraspherical polynomials and their q-analogues. Canad. J. Math. 34, 718-736 (1982) · Zbl 0451.33003
[63] Butzer, P. L.; Fehér, F.: E. B. Christoffel. (1981)
[64] Carleman, T.: A theorem concerning Fourier series. Proc. London math. Soc. 21, 483-492 (1923) · Zbl 49.0201.02
[65] Carleman, T.: On a theorem of Weierstrass. Ark. mat. Astronom. fys. B 20, 1-5 (1927)
[66] Case, K. M.: Scattering theory, orthogonal polynomials, and the transport equation. J. math. Phys. 15, 974-983 (1974) · Zbl 0293.45004
[67] Case, K. M.: Orthogonal polynomials from the viewpoint of scattering theory. J. math. Phys. 15, 2166-2174 (1974) · Zbl 0288.42009
[68] Case, K. M.: Orthogonal polynomials, II. J. math. Phys. 16, 1435-1440 (1975) · Zbl 0304.42015
[69] Case, K. M.: Orthogonal polynomials revisited. Theory and applications of special function, 289-304 (1975)
[70] Case, K. M.: Scattering theory and polynomials orthogonal on the unit circle. J. math. Phys. 20, 299-310 (1979) · Zbl 0439.33014
[71] Charris, J. A.: Sieved pollaczek and random walk polynomials. Ph.d. dissertation (1984)
[72] J. A. Charris and M. Ismail, On sieved orthogonal polynomials, II, Random walk polynomials, Canad. J. Math., in press. · Zbl 0576.33006
[73] J. A. Charris and M. Ismail, On sieved orthogonal polynomials, V, Sieved Pollaczek polynomials, manuscript. · Zbl 0645.33018
[74] Chihara, T. S.: Chain sequences and orthogonal polynomials. Trans. amer. Math. soc. 104, 1-16 (1962) · Zbl 0171.32804
[75] Chihara, T. S.: Orthogonal polynomials whose zeros are dense in intervals. J. math. Anal. appl. 24, 362-371 (1968) · Zbl 0185.12602
[76] Chihara, T. S.: An introduction to orthogonal polynomials. (1978) · Zbl 0389.33008
[77] Chihara, T. S.: On generalized Stieltjes-wiegert and related orthogonal polynomials. J. comput. Appl. math. 5, 291-297 (1979) · Zbl 0425.33010
[78] Chihara, T. S.: Orthogonal polynomials whose dustribution functions have finit point spectra. SIAM J. Math. anal. 11, 358-364 (1980) · Zbl 0442.42015
[79] Chihara, T. S.: Indeterminate symmetric moment problems. J. math. Anal. appl. 85, 331-346 (1982) · Zbl 0485.44004
[80] Chihara, T. S.: Spectral properties of orthogonal polynomials on unbounded sets. Trans. amer. Math. soc. 270, 623-639 (1982) · Zbl 0489.42024
[81] Chihara, T. S.: Orthogonal polynomials with discrete spectra on the real line. J. approx. Theory 42, 97-105 (1984) · Zbl 0561.33008
[82] Chihara, T. S.; Nevai, P.: Orthogonal polynomials and measures with finitely many point masses. J. approx. Theory 35, 370-380 (1982) · Zbl 0512.42024
[83] C. K. Chui, Approximations and expansions, in ”The Encyclopedia of Physical Science and Technology” (R. A. Meyers, Ed.), Academic Press, New York, in press.
[84] Császár, A.: On the classical orthogonal polynomials. Ann. univ. Sci. Budapest R. Eötvös sect. Math. 1, 33-39 (1958)
[85] Czipzer, J.; Freud, G.: Sur l’approximation d’une fonction périodique et de ses dérivées successives par un polynome trigonométrique et par ses dérivées successives. Acta math. 99, 33-51 (1958)
[86] De Boor, C.; Golub, G. H.: The numerically stable reconstruction of Jacobi matrix from spectral data. Linear algebra appl. 21, 245-260 (1978) · Zbl 0388.15010
[87] Devore, R. A.: Freud’s work in constructive function theory. J. approx. Theory 46, 32-37 (1986) · Zbl 0596.41001
[88] Ditzian, Z.: On interpolation of lp[a, b] and weighted Sobolev spaces. Pacific J. Math. 90, 307-323 (1980) · Zbl 0463.46025
[89] Z. Ditzian, D. S. Lubinsky, P. Nevai, and V. Totik, Polynomial approximation with exponential weights, in preparation. · Zbl 0649.41009
[90] Z. Ditzian and V. Totik, K functionals and best polynomial approximation in weighted LpR, manuscript. · Zbl 0606.41010
[91] Z. Ditzian and V. Totik, Moduli of smoothness, manuscript. · Zbl 0666.41001
[92] Dombrowski, J. M.: Spectral properties of phase operators. J. math. Phys. 15, 576-577 (1974)
[93] Dombrowski, J. M.: Spectral properties of real parts of weighted shift operators. Indiana univ. Math. J. 29, 249-259 (1980) · Zbl 0404.47016
[94] Dombrowski, J. M.: Tridiagonal matrix representations of cyclic self-adjoint operators, I. Pacific J. Math 114, 325-334 (1984) · Zbl 0557.47015
[95] Dombrowski, J. M.: Tridiagonal matrix representations of cyclic self-adjoint operators, II. Pacific J. Math 120, 47-53 (1985) · Zbl 0606.47025
[96] J. M. Dombrowski, Tridiagonal matrices and absolute continuity, manuscript. · Zbl 0668.47019
[97] Dombrowski, J. M.; Fricke, G. H.: The absolute continuity of phase operators. Trans. amer. Math. soc. 213, 363-372 (1975) · Zbl 0346.47033
[98] J. M. Dombrowski and P. Nevai, Orthogonal polynomials, measures and recurrence relations, SIAM J. Math. Anal., in press. · Zbl 0595.42011
[99] Dzarbasyan, M. M.: On weighted best polynomial approximation on the whole real axis. Dokl. akad. Nauk SSSR 84, 1123-1126 (1952)
[100] Dzarbasyan, M. M.; Tavadyan, A. B.: On weighted uniform approximation by polynomials of functions of several variables. Mat. sb. 43, No. 85, 227-256 (1957) · Zbl 0129.27601
[101] Elliot, D.; Paget, D. F.: The convergence of product integration rules. Bit 18, 137-141 (1978) · Zbl 0389.65006
[102] Erdös, P.: Problems and results on the convergence and divergence properties of the Lagrange interpolation polynomials and some extremal problems. Mathematica (Cluj) 19, No. 33, 65-73 (1968) · Zbl 0159.35603
[103] Erdös, P.: On the distribution of roots of orthogonal polynomials. Proceedings, conf. Constructive th. Functions, 145-150 (1972)
[104] Erdös, P.; Feldheim, E.: Sur le mode de convergence pour l’interpolation de Lagrange. CR acad. Sci. Paris 203, 913-915 (1936) · Zbl 62.0303.01
[105] Erdös, P.; Freud, G.: On polynomials with regularly distributed zeros. Proc. London math. Soc. (3) 29, 521-537 (1974) · Zbl 0294.33006
[106] Erdös, P.; Turán, P.: On interpolation, I. Ann. of math. 38, 142-151 (1937) · Zbl 0016.10604
[107] Erdös, P.; Turán, P.: On interpolation, II. Ann. of math. 39, 703-724 (1938) · Zbl 64.0247.01
[108] Erdös, P.; Turán, P.: On interpolation, II. Ann. of math. 41, 510-553 (1940) · Zbl 66.0272.01
[109] Erdös, P.; Turán, P.: On uniformly dense distribution of certain sequences of points. Ann. of math. 41, 162-173 (1940) · Zbl 66.0347.01
[110] Fejér, L.: Lebesguesche konstanten und divergente fourierreihen. J. reine angew. Math. 139, 22-53 (1910) · Zbl 41.0288.01
[111] Feldheim, E.: On the orthogonality of the fundamental polynomials of Lagrange interpolation. C. R. Acad. sci. Paris 203, 650-652 (1936) · Zbl 0015.06302
[112] Feldheim, E.: Sur le mode de convergence pour l’interpolation de Lagrange. Dokl. akad. Nauk SSSR 14, 327-331 (1937) · Zbl 0016.39604
[113] Feldheim, E.: Orthogonality of the fundamental polynomials and mean convergence of Lagrange interpolation at the Chebyshev abscissas. Bull. soc. Math. France 65, 1-40 (1937) · Zbl 0017.34706
[114] Feldheim, E.: Theory of convergence of interpolation processes and mechanical quadratures. Mémorial sci. Math. 95 (1939)
[115] Ford, W. R.: On the integration of the homogeneous linear difference equation of second order. Trans. amer. Math. soc. 10, 319-336 (1909) · Zbl 40.0384.02
[116] Freud, G.: Restglied eines tauberschen satzes, I. Acta math. Acad. sci. Hungar. 2, 299-308 (1951) · Zbl 0044.32404
[117] Freud, G.: Über die starke (C, 1)-summierbarkeit von orthogonalen polynomreihen. Acta math. Acad. sci. Hungar. 3, 83-88 (1952) · Zbl 0047.30404
[118] Freud, G.: Über die konvergenz orthogonaler polynomreihen. Acta math. Acad. sci. Hungar. 3, 89-98 (1952) · Zbl 0047.30501
[119] Freud, G.: Restglied eines tauberschen satzes, II. Acta math. Acad. sci. Hungar. 3, 299-307 (1952) · Zbl 0048.29602
[120] Freud, G.: Über die absolute konvergenz von orthogonalen polynomreihen. Acta math. Acad. sci. Hungar. 4, 127-135 (1953) · Zbl 0052.06003
[121] Freud, G.: Über die lebesgueschen funktionen der lagrangeschen interpolation. Acta math. Acad. sci. Hungar. 4, 137-142 (1953) · Zbl 0051.04804
[122] Freud, G.: Über einen satz von P. Erdös und P. Turán. Acta math. Acad. sci. Hungar. 4, 255-266 (1953) · Zbl 0052.06403
[123] Freud, G.: On a Tauberian theorem. Magyar tud. Akad. mat. Fiz. oszt. Közl. 3, 43-53 (1953)
[124] Freud, G.: Über die konvergenz des Hermite-fejérschen interpolationsverfahrens. Acta math. Acad. sci. Hungar. 5, 109-128 (1954) · Zbl 0055.05906
[125] Freud, G.: Restglied eines taunerschen satzes, III. Acta math. Acad. sci. Hungar. 5, 275-289 (1954)
[126] Freud, G.: Über orthogonale polynome. Acta math. Acad. sci. Hungar. 5, 291-298 (1954) · Zbl 0058.05503
[127] Freud, G.: Über das gliedweise differenzieren einer orthogonalen polynomreihe. Acta math. Acad. sci. Hungar. 6, 221-226 (1955) · Zbl 0064.30205
[128] Freud, G.: Über einseitige approximation durch polynome, I. Acta sci. Math. (Szeged) 16, 12-28 (1955) · Zbl 0065.05001
[129] Freud, G.: One-sided L1-approximations and their application to theorems of Tauberian type. Dokl. akad. Nauk SSSR 102, 689-691 (1955)
[130] Freud, G.: Über differenzierte folgen del lagrangeschen interpolation. Acta math. Acad. sci. Hungar. 6, 467-473 (1955) · Zbl 0066.31102
[131] Freud, G.: Über die asymptotik orthogonaler polynome. Publ. inst. Math. acad. Serbe sci. 11, 19-32 (1957) · Zbl 0081.06001
[132] Freud, G.: Eine bemerkung zur asymptotischen darstellung von orthogonalpolynomen. Math. scand. 5, 285-290 (1957) · Zbl 0081.06002
[133] Freud, G.: Bemerkung über die konvergenz eines interpolationsverfahrens von P. Turán. Acta math. Acad. sci. Hungar. 9, 337-341 (1958) · Zbl 0085.05201
[134] Freud, G.: Über die konvergenz im mittel von lagrangeschen interpolationspolynomfolgen. Acta math. Acad. sci. Hungar. 13, 257-268 (1962) · Zbl 0109.28902
[135] Freud, G.: Über die (C, 1)-summen der entwicklungen nach orthogonalen polynomen. Acta math. Acad. sci. Hungar. 14, 197-208 (1963) · Zbl 0119.05802
[136] Freud, G.: Über die eindeutigkeit der lösung des hamburger-stieltjesschen momentenproblems. Magyar tud. Akad. mal. Kutató int. Közl. 9, 117-123 (1964)
[137] Freud, G.: Über die konvergenz der orthogonal-polynomreihe einer funktion mit beschränkter variation. Arch. math. (Brno) 1, 247-250 (1965) · Zbl 0192.16302
[138] Freud, G.: Über das rieszsche eindeutigkeitskriterium des momenten-problems. Acta sci. Math. (Szeged) 27, 77-79 (1966) · Zbl 0178.48103
[139] Freud, G.: Über die absolute konvergenz von entwicklungen nach hermiteähnlichen orthogonalpolynomen. Studia sci. Math. hungar. 1, 129-131 (1966) · Zbl 0148.29703
[140] Freud, G.: Approximation by interpolating polynomials. Mat. lapok 18, 61-64 (1967) · Zbl 0165.07401
[141] Freud, G.: On convergence of Lagrange interpolation processes on infinite intervals. Mat. lapok 18, 289-292 (1967)
[142] Freud, G.: Über die starke approximation durch differenzierte folgen von approximierenden polynomen. Studia sci. Math. hungar. 2, 221-226 (1967) · Zbl 0193.02403
[143] Freud, G.: Über die lokalisationseigenschaften und die starke (C, 1)-summation lagrangescher interpolationsverfahren. Publ. math. (Debrecen) 15, 293-301 (1968) · Zbl 0177.09401
[144] Freud, G.: Über starke approximation mit hilfe einer klasse von interpolationspolynomen. Acta math. Acad. sci. Hungar. 19, 201-208 (1968) · Zbl 0193.02404
[145] Freud, G.: Über eine klasse lagrangescher interpolationsverfahren. Studia sci. Math. hungar. 3, 249-255 (1968) · Zbl 0165.38502
[146] Freud, G.: Orthogonale polynome. (1969) · Zbl 0169.08002
[147] Freud, G.: Orthogonal polynomials. (1971) · Zbl 0226.33014
[148] Freud, G.: On weighted polynomial approximation on the whole real axis. Acta math. Acad. sci. Hungar. 20, 223-225 (1969) · Zbl 0172.34103
[149] Freud, G.: Lagrangesche interpolation über die nullstellen der hermiteschen orthogonalpolynome. Studia sci. Math. hungar. 4, 179-190 (1969) · Zbl 0191.35901
[150] Freud, G.: Ein beitrag zur theorie des lagrangeschen interpolationsverfahrens. Studio sci. Math. hungar. 4, 379-384 (1969) · Zbl 0186.11401
[151] Freud, G.: On weighted approximation by polynomials on the real axis. Soviet math. Dokl. 11, 370-371 (1970) · Zbl 0205.08201
[152] Freud, G.: On two polynomial inequalities, I. Acta math. Acad. sci. Hungar. 22, 109-116 (1971) · Zbl 0219.41003
[153] Freud, G.: On an extremum problem for polynomials. Acta sci. Math. (Szeged) 32, 287-290 (1971) · Zbl 0222.41003
[154] Freud, G.: On a class of orthogonal polynomials. Mat. zametki 9, 511-520 (1971) · Zbl 0226.33014
[155] Freud, G.: On expansions in orthogonal polynomials. Studia sci. Math. hungar. 6, 367-374 (1971) · Zbl 0265.42010
[156] Freud, G.: On an inequality of Markov type. Soviet math. Dokl. 12, 570-573 (1971) · Zbl 0221.41008
[157] Freud, G.: On approximation with weight (exp{ -x2 2} by polynomials. Soviet math. Dokl. 12, 1837-1840 (1971) · Zbl 0254.41004
[158] Freud, G.: On a class of orthogonal polynomials. Constructive function theory Proceedings, internat. Conf., 177-182 (1972) · Zbl 0235.33012
[159] Freud, G.: A contribution to the problem of weighted polynomial approximation. Isnm 20, 431-447 (1972) · Zbl 0259.41004
[160] Freud, G.: On two polynomial inequalities, II. Acta math. Acad. sci. Hungar. 23, 137-145 (1972) · Zbl 0263.26013
[161] Freud, G.: On Hermite-Fejér interpolation sequences. Acta math. Acad. sci. Hungar. 23, 175-178 (1972) · Zbl 0256.41002
[162] Freud, G.: On Hermite-Fejér interpolation processes. Studia sci. Math. hungar. 1, 307-316 (1972)
[163] Freud, G.: On weighted simultaneous polynomial approximation. Studia sci. Math. hungar. 7, 337-342 (1972) · Zbl 0272.41003
[164] Freud, G.: On direct and converse theorems in the theory of weighted polynomial approximation. Math. Z. 126, 123-134 (1972) · Zbl 0222.41004
[165] Freud, G.: On the greatest zero of an orthogonal polynomial, I. Acta sci. Math. (Szeged) 34, 91-97 (1973) · Zbl 0262.33014
[166] Freud, G.: On weighted L1-approximation by polynomials. Studia math. 46, 125-133 (1973) · Zbl 0254.41003
[167] Freud, G.: Investigations on weighted approximation by polynomials. Studia sci. Math. hungar. 8, 285-305 (1973) · Zbl 0291.41005
[168] Freud, G.: On polynomial approximation with the weight exp{ -x2k 2}. Acta math. Acad. sci. Hungar. 24, 363-371 (1973) · Zbl 0269.41004
[169] Freud, G.: On the converse theorems of weighted polynomial approximation. Acta math. Acad. sci. Hungar. 24, 389-397 (1973) · Zbl 0269.41005
[170] Freud, G.: On polynomial approximation with respect to general weights. Lecture notes in mathematics 399, 149-179 (1973)
[171] Freud, G.: Error estimates for Gauss-Jacobi quadrature formulae. Topics in numerical analysis, 113-121 (1973) · Zbl 0285.65019
[172] Freud, G.: On estimations of the greatest zeros of orthogonal polynomials. Acta math. Acad. sci. Hungar. 25, 99-107 (1974) · Zbl 0276.42006
[173] Freud, G.: Extension of the Dirichlet-Jordan criterion to a general class of orthogonal polynomial expansions. Acta math. Acad. sci. Hungar. 25, 109-122 (1974) · Zbl 0287.42015
[174] Freud, G.: On the theory of one sided weighted L1-approximation by polynomials. Isnm 25, 285-303 (1974) · Zbl 0291.41005
[175] Freud, G.: On the greatest zero of an orthogonal polynomial, II. Acta sci. Math. (Szeged) 36, 49-54 (1974) · Zbl 0285.33012
[176] Freud, G.: An estimate of the error of Padé approximants. Acta math. Acad. sci. Hungar. 25, 213-221 (1974) · Zbl 0285.41011
[177] Freud, G.: Numerical estimates for the error of Gauss-Jacobi quadrature formulae. Topics in numerical analysis, II, 43-50 (1975) · Zbl 0339.65014
[178] Freud, G.: On the extension of the Fejér-Lebesgue theorem to orthogonal polynomial series. Collection of papers dedicated to L. Iliev, sofia, 257-265 (1975)
[179] Freud, G.: Error estimates for Gauss-Jacobi quadrature formulae and their applications. Alkalmaz. mat. Lapok 1, 23-36 (1975) · Zbl 0363.65016
[180] Freud, G.: On a class of sets introduced by P. Erdös. Colloq. math. Soc. bolyai 11 and 10, 701-710 (1975)
[181] Freud, G.: On the coefficients in the recursion formulae of orthogonal polynomials. Proc. roy. Irish acad. Sect. A (I) 76, 1-6 (1976) · Zbl 0327.33008
[182] Freud, G.: Markov-Bernstein type inequalities in $Lp(-\infty,\infty)$. Approximation theory, II, 369-377 (1976)
[183] Freud, G.: Weighted polynomial approximation and K-functionals. Theory of approximation, with applications, 9-23 (1976) · Zbl 0351.41003
[184] Freud, G.: On the zeros of orthogonal polynomials with respect to measures with noncompact support. Anal. numér. Théor. approx. 6, 125-131 (1977) · Zbl 0383.33008
[185] Freud, G.: On Markov-Bernstein-type inequalities and their applications. J. approx. Theory 19, 22-37 (1977) · Zbl 0356.41003
[186] Freud, G.: On uniform boundedness of orthonormal polynomial sequences. Nederl. akad. Wetensch. proc. Ser. A 81, 436-444 (1978) · Zbl 0409.33012
[187] Freud, G.: On the greatest zero of an orthogonal polynomial. J. approx. Theory 46, 16-24 (1986) · Zbl 0603.42022
[188] Freud, G.: Approximation by Hermite-Fejér interpolation. (1977)
[189] Freud, G.; Ganelius, T.: Some remarks on one-sided approximation. Math. scand. 5, 276-284 (1957) · Zbl 0084.06103
[190] Freud, G.; Giroux, A.; Rahman, Q. I.: Sur l’approximation polynomiale sur tout l’axe reel. Canad. J. Math. 28, 961-967 (1976) · Zbl 0362.41004
[191] Freud, G.; Giroux, A.; Rahman, Q. I.: Sur l’approximation polynomiale aves poids exp{-|x|}. Canad. J. Math. 30, 358-372 (1978) · Zbl 0409.41002
[192] Freud, G.; Liu, C. D.: On mixed Lagrange and Hermite-Fejér interpolation. (1977)
[193] Freud, G.; Mhaskar, H. N.: Weighted polynomial approximation in rearrangement invariant Banach function spaces on the whole real line. Indian J. Math. 22, No. 3, 209-224 (1980) · Zbl 0516.41004
[194] Freud, G.; Mhaskar, H. N.: K-functionals and moduli of continuity in weighted polynomial approximation. Ark. mat. 21, 145-161 (1983)
[195] Freud, G.; Németh, G.: On the lp-norms of orthonormal Hermite functions. Studia sci. Math. hungar. 8, 399-404 (1973)
[196] Freud, G.; Nevai, P.: Über einseitige approximation durch polynome, III. Acta. sci. Math. (Szeged) 35, 65-72 (1973) · Zbl 0246.41011
[197] Freud, G.; Nevai, P.: Weighted L1 and one-sided weighted L1 polynomial approximation on the real line. Magyar tud. Akad. III. Oszt. közl. 21, 485-502 (1973)
[198] Freud, G.; Sharma, A.: Some good sequences of interpolatory polynomials. Canad. J. Math. 26, 233-246 (1974) · Zbl 0287.41003
[199] Freud, G.; Sharma, A.: Some good sequences of interpolatory polynomials: addendum. Canad. J. Math 29, 1163-1166 (1977) · Zbl 0367.41003
[200] Freud, G.; Szabados, J.: Remark on a theorem of H. Bohr. Mat. lapok 21, 253-257 (1970) · Zbl 0252.41004
[201] Freud, G.; Szabados, J.: Über einseitige approximation durch polynome, II. Acta sci. Math. (Szeged) 31, 59-67 (1970) · Zbl 0197.34702
[202] Freud, G.; Vértesi, P.: Some examples of a new error estimate of Gauss-Jacobi quadrature formulae based on the Chebyshev roots. Ann. univ. Sci. Budapest sect. Comput. 1, 65-80 (1978) · Zbl 0498.65008
[203] Gagaev, B. M.: On the uniqueness of a system or orthogonal functions invariant with respect to differentiation. CR acad. Sci. Paris 188, 222-225 (1929)
[204] Gagaev, B. M.: On some classes of orthogonal functions. Izv. akad. Nauk SSSR 10, 197-206 (1946)
[205] Gagaev, B. M.: On luzin’s generalized problem. Izv. vuz. Mat. 3, No. 16, 101-103 (1960) · Zbl 0122.31301
[206] Ganelius, T.: On the remainder in a Tauberian theorem. Kungl. fysiogr. Sällsk. i Lund förh 24, No. No. 20 (1954) · Zbl 0057.09204
[207] Ganelius, T.: Tauberian remainder theorems. Lecture notes in mathematics 232 (1972) · Zbl 0236.41006
[208] Ganelius, T.: Géza freud’s work on Tauberian remainder theorems. J. approx. Theory 46, 42-50 (1986) · Zbl 0588.40008
[209] Gautschi, W.: Computational aspects of three-term recurrence relations. SIAM rev. 9, 24-82 (1967) · Zbl 0168.15004
[210] Gautschi, W.: Polynomials orthogonal with respect to the reciprocal gamma function. Bit 22, 387-389 (1982) · Zbl 0484.65011
[211] Gautschi, W.: On generating orthogonal polynomials. SIAM J. Sci. statist. Comput. 3, 289-317 (1982) · Zbl 0482.65011
[212] Gautschi, W.: How and how not to check Gaussian quadrature formulae. Bit 23, 209-216 (1983) · Zbl 0518.65007
[213] Gautschi, W.: The condition of Vandermonde-like matrices involving orthogonal polynomials. Linear algebra appl. 52/53, 293-300 (1983) · Zbl 0522.33005
[214] Gautschi, W.: On some orthogonal polynomials of interest in theoretical chemistry. Bit 24, 473-483 (1984) · Zbl 0547.65008
[215] Gautschi, W.; Milanovic, G. V.: Polynomials orthogonal on the semicircle. J. approx. Theory 46, 230-250 (1986) · Zbl 0604.42024
[216] W. Gawronski, On the asymptotic distribution of the zeros of Hermite, Laguerre and Jonquière polynomials, J. Approx. Theory, in press. · Zbl 0629.42012
[217] Geronimo, J. S.: Szego’s theorem on Hankel determinants. J. math. Phys. 20, 484-491 (1979) · Zbl 0432.33008
[218] Geronimo, J. S.: A relation between the coefficients in the recurrence formula and the spectral function for orthogonal polynomials. Trans. amer. Math. soc. 260, 65-82 (1980) · Zbl 0445.42002
[219] Geronimo, J. S.: Matrix orthogonal polynomials on the unit circle. J. math. Phys. 22, 1359-1365 (1981) · Zbl 0505.42019
[220] Geronimo, J. S.: Scattering theory and matrix orthogonal polynomials on the real line. Circuits systems signal process 1, 471-495 (1982) · Zbl 0506.15010
[221] Geronimo, J. S.: An upper bound on the number of eigenvalues of an infinite-dimensional Jacobi matrix. J. math. Phys. 23, 917-921 (1982) · Zbl 0492.42016
[222] J. S. Geronimo, Scattering theory, orthogonal polynomials and q-series, SIAM J. Math. Anal., in press. · Zbl 0802.42019
[223] J. S. Geronimo, On the spectra of infinite-dimensional Jacobi matrices, manuscript. · Zbl 0671.47021
[224] Geronimo, J. S.; Case, K. M.: Scattering theory and polynomials orthogonal on the unit circle. J. math. Phys. 20, 299-320 (1979) · Zbl 0439.33014
[225] Geronimo, J. S.; Case, K. M.: Scattering theory and polynomials orthogonal on the real line. Trans. amer. Math. soc. 258, 467-494 (1980) · Zbl 0436.42018
[226] Geronimo, J. S.; Nevai, P.: Necessary and sufficient conditions relating the coefficients in the recurrence formula to the spectral function for orthogonal polynomials. SIAM J. Math. anal. 14, 622-637 (1983) · Zbl 0517.42031
[227] Geronimo, J. S.; Van Assche, W.: Orthogonal polynomials with asymptotically periodic recurrence coefficients. J. approx. Theory 46, 251-283 (1986) · Zbl 0604.42023
[228] Geronimus, Ya.L: On orthogonal polynomials with respect to numerical sequences and Hahn’s theorems. Izv. akad. Nauk SSSR 4, 215-228 (1940)
[229] Geronimus, Ya.L: Orthogonal polynomials. (1961) · Zbl 0093.26503
[230] Geronimus, Ya.L: Polynomials orthogonal on a circle and their applications. Amer. math. Soc. transl. 3, 1-78 (1962)
[231] Geronimus, Ya.L: On asymptotic properties of polynomials which are orthogonal on the unit circle, and on certain properties of positive harmonic functions. Amer. math. Soc. transl. 3, 79-106 (1962)
[232] Geronimus, Ya.L: Some asymptotic properties of orthogonal polynomials. Soviet math. Dokl. 165, 1387-1389 (1965) · Zbl 0151.08301
[233] Geronimus, Ya.L: Some asymptotic properties of orthogonal polynomials. Vestnik khar’kov. GoS univ. 32, 40-50 (1966)
[234] Geronimus, Ya.L: Szego’s limit relation and properties of related orthogonal polynomials. Izv. akad. Nauk SSSR 37, 1186-1199 (1973)
[235] Geronimus, Ya.L: On a problem of S. N. Bernstein. Soviet math. Dokl. 17, 1051-1054 (1976) · Zbl 0351.42020
[236] Geronimus, Ya.L: Orthogonal polynomials. Amer. math. Soc. transl. 108, 37-130 (1977)
[237] Geronimus, Ya.L: Estimates for orthogonal polynomials and stekloffs conjecture. Soviet math. Dokl. 18, 1176-1179 (1977) · Zbl 0409.33010
[238] Goh, W.: Asymptotic expansions for pollaczek polynomials. (1978)
[239] Golinskii, B. L.: On Steklov’s problem in the theory of orthogonal polynomials. Mat. zametki 15, 21-32 (1974) · Zbl 0302.42014
[240] Golinskii, B. L.: The asymptotic representation at a point of the derivatives of orthogonal poynomials. Math. notes 19, 497-504 (1976)
[241] Golinskii, B. L.: Asymptotic representations of orthogonal polynomials. Uspekhi mat. Nauk 35, 145-196 (1980)
[242] Golinski, B. L.; Ibragimov, I. A.: On Szego’s limit theorem. Math. USSR-izv. 5, 421-446 (1971)
[243] Goncar, A. A.; Rahmanov, E. A.: On convergence of simultaneous Padé approximants for systems of functions of Markov type. Proc. Steklov inst. Math. 3, 31-50 (1983)
[244] Goncar, A. A.; Rahmanov, E. A.: Equilibrium measure and distribution of zeros of extremal polynomials. Mat. sb. 125, No. 167, 117-127 (1984)
[245] Gotlieb, D.; Orszag, S. A.: Numerical analysis of spectral methods. CBMS-NSF conference series, no. 26 (1977)
[246] Görlich, E.; Markett, C.: On a relation between the norms of Cesàro means of Jacobi expansions. Linear spaces and approximation, 251-262 (1978)
[247] E. Görlich and C. Markett, A lower bound for projection operators in L1, Ark. Mat., in press. · Zbl 0602.41007
[248] Grenander, U.; Rosenblatt, M.: An extension of a theorem of G. Szego and its application to the study of stochastic processes. Trans. amer. Math. soc. 76, 112-126 (1954) · Zbl 0059.11804
[249] Grenander, U.; Szegö, G.: Toeplitz forms and their applications. (1958) · Zbl 0080.09501
[250] Guseinov, G. S.: The determination of an infinite Jacobi matrix from the scattering data. Soviet math. Dokl. 17, 596-600 (1976) · Zbl 0336.47021
[251] Haar, A.: Reihenentwicklungen nach legendreschen polynomen. Math. ann. 78, 121-136 (1917) · Zbl 46.0571.01
[252] Hahn, W.: Über die jacobischen polynome und zwei verwandte polynomklassen. Math. 39, 634-638 (1935) · Zbl 0011.06202
[253] Hardy, G. H.; Littlewood, J. E.: Sur la série de Fourier d’une fonction à carré sommable. CR acad. Sci. Paris 156, 1307-1309 (1913) · Zbl 44.0302.03
[254] E. Hendriksen and H. van Rossum, Semi-classical orthogonal polynomials, in ”Orthogonal Polynomials and Their Applications” (C. Brezinski et al., Eds.), Lecture Notes in Mathematics, Springer-Verlag, Berlin, in press. · Zbl 0587.42017
[255] Jr., I. I. Hirschman: The strong Szego limit theorem for Toeplitz determinants. Amer. J. Math. 88, 577-614 (1966) · Zbl 0173.42602
[256] Hodges, C. H.: Von hove singularities an continued fraction coefficients. J. physique lett. 38, 187-189 (1977)
[257] Holló, A.: On mechanical quadrature. Thesis, 1-33 (1939)
[258] Hörmander, L.: A new proof and a generalization of an inequality of Bohr. Math. scand. 2, 33-45 (1954) · Zbl 0056.30801
[259] Hörup, C.: An asymptotic formula for the derivatives of orthogonal polynomials on the unit circle. Math. scand. 20, 32-40 (1967) · Zbl 0181.34902
[260] Ismail, M. E. H: On solving differential and difference equations with variable coefficients. J. math. Anal. appl. 62, 81-89 (1978) · Zbl 0369.34005
[261] Ismail, M. E. H: On solving certain differential equations with variable coefficients. Aequationes math. 17, 148-153 (1978) · Zbl 0379.34010
[262] Ismail, M. E. H: On sieved orthogonal polynomials. I. symmetric pollaczek analogues. SIAM J. Math. anal. 16, 1093-1113 (1985) · Zbl 0576.33005
[263] M. E. H. Ismail, On sieved orthogonal poynomials. III. Orthogonality on several intervals, Trans. Amer. Math. Soc., in press. · Zbl 0612.33009
[264] Ismail, M. E. H: On sieved orthogonal polynomials. IV. generating functions. J. approx. Theory 46, 284-296 (1986) · Zbl 0645.33017
[265] M. E. H. Ismail and F. Mulla, On the generalized Chebyshev polynomials, SIAM J. Math. Anal., in press. · Zbl 0611.33015
[266] Ismail, M. E. H; Wilson, J. A.: Asymptotic relations for the q-Jacobi and $4{\pi}3$ polynomials. J. approx. Theory 36, 43-54 (1982) · Zbl 0489.33011
[267] Jackson, D.: The theory of approximation. Amer. math. Soc. colloq. Publ. 11 (1930) · Zbl 56.0936.01
[268] Karamata, J.: Über die Hardy-littlewoodsche umkehrung des abelschen stetigkeitssatzes. Math. Z. 32, 519-520 (1930) · Zbl 56.0210.01
[269] Karklin, S.; Szegö, G.: On certain determinants whose elements are orthogonal polynomials. J. analyse math. 8, 1-157 (1960)
[270] Kis, O.: Lagrange interpolation at the zeros of the sonin-markoff polynomials. Acta math. Acad. sci. Hungar. 23, 389-417 (1972) · Zbl 0254.41001
[271] Knopfmacher, A.: Positive convergent approximation operators associated with orthogonal polynomials for weights on the whole real line. J. approx. Theory 46, 182-203 (1986) · Zbl 0604.41025
[272] A. Knopfmacher and D. S. Lubinsky, Mean convergence of Lagrange interpolation for Freud’s weights with application to product integration rules, manuscript. · Zbl 0634.41003
[273] A. Knopfmacher and D. S. Lubinsky, Asymptotic behavior of the ratio of Christoffel functions for weights W2 and W2g, manuscript. · Zbl 0647.42015
[274] Kolmogorov, A. N.: Stationary sequences in Hilbert spaces. Bull. Moscow state univ. 2, No. No. 6, 1-40 (1941)
[275] Koornwinder, T.: The addition formula for Jacobi polynomials. I. summary of results. Indag. math. 34, 188-191 (1972) · Zbl 0247.33017
[276] Koornwinder, T.: The addition formula for Jacobi polynomials and spherical harmonics. SIAM J. Appl. math. 25, 236-246 (1973) · Zbl 0276.33023
[277] Korevaar, J.: An estimate of the error in Tauberian theorems for power series. Duke math. J. 18, 731-733 (1951) · Zbl 0043.06304
[278] Korous, J.: Über reihenentwicklungen nach verallgemeinerten laguerreschen polynomen mit drei parametern. Vestnik královské ceské spolecnosti nauk, trida mat.-prirodoved, 26 (1937) · Zbl 63.0956.02
[279] Korous, J.: Über entwicklungen der funktionen einer reellen veränderlichen in reihen einer gewissen klasse orthogonaler polynome im unendlichen intervalle. Vestnik královské ceské spolecnosti nauk, trida mat.-prirodoved, 19 (1937) · Zbl 63.0957.01
[280] Korous, J.: On expansion of functions of one real variable in series of certain orthogonal polynomials. Rozprawy ceské akad. 48, 12 (1938)
[281] Korovkin, P. P.: Capacity of sets and polynomials which minimize integrals. Kaliningrad. GoS ped. Inst. učen. Zap. 5, 34-52 (1958)
[282] Korovkin, P. P.: Asymptotic representation of polynomials which minimize integrals. Investigation on contemporary problems of constructive function theory, 273-276 (1961)
[283] Krall, H. L.: On derivatives of orthogonal polynomials. Bull. amer. Math. soc. 42, 423-428 (1936) · Zbl 0014.39903
[284] Krall, H. L.: On higher derivatives of orthogonal polynomials. Bull. amer. Math. soc. 42, 867-870 (1936) · Zbl 0016.01905
[285] Krein, M. G.: Generalization of investigations of G. Szego, V. I. Smirnov and A. N. Kolmogorov. Dokl. akad. Nauk SSSR 46, 91-94 (1945)
[286] Krein, M. G.: A special class of entire and meromorphic functions. Transl. math. Monographs 2 (1962) · Zbl 0119.09601
[287] Kuetz, M.: A note on the mean convergence of Lagrange interpolation. J. approx. Theory 35, 77-82 (1982) · Zbl 0485.41001
[288] Kutepov, V. A.: Remarks on interpolation on unbounded sets. Izv. vyssh. Uchebn. zaved mat 226, 78-80 (1981) · Zbl 0468.41002
[289] Ky, N. X.: On Jackson and Bernstein type approximation theorems in the case of approximation by algebraic polynomials in lp spaces. Studia sci. Math. hungar. 9, 405-415 (1974)
[290] . Oeuvres de Laguerre, 685-711 (1972)
[291] Landau, H. J.: On Szego’s eigenvalue distribution theorem and non-Hermitian kernels. J. analyse math. 28, 335-357 (1975) · Zbl 0321.45005
[292] Landau, H. J.; Widom, H.: Eigenvalue distribution of time and frequency limiting. J. math. Anal. appl. 77, 469-481 (1980) · Zbl 0471.47029
[293] Lee, S. Y.: The inhomogeneous Airy functions $Gi(z)$ and $Hi(z)$. J. chem. Phys. 72, 332-336 (1980)
[294] A. L. Levin and D. S. Lubinsky, Canonical products and the weights exp(-|x|{$\alpha$}), {$\alpha$} > 1, with applications, manuscript. · Zbl 0619.41006
[295] A. L. Levin and D. S. Lubinsky, Weights on the real line that admit good relative polynomial approximation, with applications, manuscript. · Zbl 0612.41010
[296] Lew, J. S.; Quarles, D. A.: Nonnegative solutions of a nonlinear recurrence. J. approx. Theory 38, 357-379 (1983) · Zbl 0518.42029
[297] Littlewood, J. E.: The converse of Abel’s theorem on power series. Proc. London math. Soc. 9, 434-448 (1910) · Zbl 42.0276.01
[298] G. López Lagomasino, Asymptotic behavior of generalized orthogonal polynomials, manuscript.
[299] Lagomasino, G. López: On the asymptotics of the ratio of orthogonal polynomials and convergence of multi-point Padé approximations. Mat. sb. 128, No. 170, 216-229 (1985)
[300] G. López Lagomasino, Survey on multipoint Padé approximation to Markov type meromorphic functions and asymptotic properties of the orthogonal polynomials generated by them, in ”Orthogonal Polynomials and Their Applications” (C. Brezinski et al., Eds.), Lecture Notes in Mathematics, Springer-Verlag, Berlin, in press. · Zbl 0603.41009
[301] Lorentz, G. G.: Some developments in approximation and interpolation in the last 20 years. (1982)
[302] Lorentz, G. G.; Jetter, K.; Riemenschneider, S. D.: Birkhoff interpolation. Encyclopedia of mathematics and its applications 19 (1983) · Zbl 0522.41001
[303] Lubinsky, D. S.: Geometric convergence of Lagrangian interpolation and numerical integration over unbounded contours and intervals. J. approx. Theory 39, 338-360 (1983) · Zbl 0544.41003
[304] Lubinsky, D. S.: A weighted polynomial inequality. Proc. amer. Math. soc. 92, 263-267 (1984) · Zbl 0518.41009
[305] Lubinsky, D. S.: Gaussian quadrature, weights on the whole real line, and even entire functions with nonnegative even order derivatives. J. approx. Theory 46, 297-313 (1986) · Zbl 0608.41017
[306] Lubinsky, D. S.: Estimates of freud-Christoffel functions for some weights with the whole real line as support. J. approx. Theory 44, 343-379 (1985) · Zbl 0584.42015
[307] Lubinsky, D. S.: On nevai’s bounds for orthogonal polynomials associated with exponential weights. J. approx. Theory 44, 86-91 (1985) · Zbl 0605.42020
[308] D. S. Lubinsky, Even entire functions absolutely monotone in [0, \infty) and weights on the whole real line, in ”Orthogonal Polynomials and Their Applications” (C. Brezinski el al., Eds.), Lecture Notes in Mathematics, Springer-Verlag, Berlin, in press. · Zbl 0599.41048
[309] D. S. Lubinsky, A. Máté, and P. Nevai, Quadrature sums involving pth powers of polynomials, manuscript. · Zbl 0623.41029
[310] Lubinsky, D. S.; Rabinowitz, P.: Rates of convergence of Gaussian quadrature for singular integrands. Math. comp. 43, 219-242 (1984) · Zbl 0574.41028
[311] Lubinsky, D. S.; Sharif, A.: On the largest zeros of orthogonal polynomials for certain weights. Math. comp. 41, 199-202 (1983) · Zbl 0521.33007
[312] Lubinsky, D. S.; Sidi, A.: Convergence of linear and nonlinear Padé approximants from series of orthogonal polynomials. Trans. amer. Math. soc. 278, 333-345 (1983) · Zbl 0518.30037
[313] D. S. Lubinsky and A. Sidi, Convergence of product integration rules for functions with interior and endpoint singularities over bounded and unbounded intervals, Math. Comp., in press. · Zbl 0602.41032
[314] Luzin, N. N.: Integral and trigonometric series. Collected works of N. N. luzin 1, 48-212 (1953) · Zbl 0051.04105
[315] Maejima, M.; Van Assche, W.: Probabilistic proofs of asymptotic formulas for some classical polynomials. Math. proc. Cambridge philos. Soc. 97, 499-510 (1985) · Zbl 0557.33006
[316] Magnus, Al: Recursive coefficients for orthogonal polynomials on connected and nonconnected sets. Lecture notes in mathematics 765, 150-171 (1979)
[317] Magnus, Al: Recurrence coefficients in case of Anderson localization. Lecture notes in mathematics, VIII-1-VIII-5 (1981)
[318] Magnus, Al: Riccati acceleration of Jacobi continued fractions and Laguerre-Hahn orthogonal polynomials. Lecture notes in mathematics 1071, 213-230 (1984)
[319] Magnus, Al: A proof of freud’s conjecture about orthogonal polynomials related to |x|p $exp(-x2m)$. Lecture notes in mathematics, 362-372 (1985)
[320] Al. Magnus, Another theorem on convergence of complex Padé approximants, manuscript.
[321] Magnus, Al: On freud’s equations for exponential weights. J. approx. Theory 46, 65-99 (1986) · Zbl 0619.42015
[322] Maki, D. P.: On determining regular behaviour from the recurrence formula for orthogonal polynomials. Pacific J. Math. 91, 173-178 (1980) · Zbl 0469.42004
[323] Marcinkiewicz, J.: Sur l’interpolation, I. Studia math. 6, 1-17 (1936) · Zbl 0016.01901
[324] Markett, C.: Cohen type inequalities for Jacobi, Laguerre and Hermite expansions. SIAM J. Math. anal. 14, 819-833 (1983) · Zbl 0542.42015
[325] Markett, C.: Nikolskii-type inequalities for Laguerre and Hermite expansions. Functions, series, operators Proceedings, conf., 811-834 (1984)
[326] Markett, C.: The Lebesgue constants for Fourier-Bessel series, mean convergence, and the order of singularity of a Sturm-Liouville equation. J. math. Anal. appl. 103, 497-523 (1984) · Zbl 0591.33006
[327] Markov, A. A.: Differenzenrechnung. (1896)
[328] Máté, A.; Nevai, P.: Bernstein’s inequality in lp for 0 p 1 and (C, 1) bounds for orthogonal polynomials. Ann. of math. 111, 145-154 (1980) · Zbl 0416.42001
[329] Máté, A.; Nevai, P.: Remarks on E. A. rahmanov’s paper ”on the asymptotics of the ratio of orthogonal polynomials,”. J. approx. Theory 36, 64-72 (1982) · Zbl 0509.30029
[330] Máté, A.; Nevai, P.: Orthogonal polynomials and absolutely continuous measures. Approximation theory, IV, 611-617 (1983)
[331] Maté, A.; Nevai, P.: Sublinear perturbations of the differential equation $y(n) = 0$ and of the analogous difference equation. J. differential equations 53, 234-257 (1984) · Zbl 0489.34035
[332] Máté, A.; Nevai, P.: Asymptotics for solutions of smooth recurrence equations. Proc. amer. Math. soc. 93, 423-429 (1985) · Zbl 0574.42017
[333] Máté, A.; Nevai, P.; Totik, V.: What is beyond Szego’s theory of orthogonal polynomials?. Lecture notes in mathematics 1105, 502-510 (1984)
[334] Máté, A.; Nevai, P.; Totik, V.: Asymptotics for the ratio of leading coefficients of orthonormal polynomials on the unit circle. Constructive approximation 1, 63-69 (1985) · Zbl 0582.42012
[335] A. Máté, P. Nevai, and V. Totik, Asymptotics for the greatest zeros of orthogonal polynomials, SIAM J. Math. Anal., in press. · Zbl 0595.42010
[336] Máté, A.; Nevai, P.; Totik, V.: Asymptotics for orthogonal polynomials defined by a recurrence relation. Constructive approximation 1, 231-248 (1985) · Zbl 0585.42023
[337] Máté, A.; Nevai, P.; Totik, V.: Mean Cesàro summability of orthogonal polynomials. Constructive theory of functions, 588-599 (1984)
[338] Máté, A.; Nevai, P.; Totik, V.: Necessary conditions for weighted mean convergence of Fourier series in orthogonal polynomials. J. approx. Theory 46, 314-322 (1986) · Zbl 0605.42023
[339] A. Máté, P. Nevai, and V. Totik, Strong and weak convergence of orthogonal polynomials, Amer. J. Math., in press. · Zbl 0633.42008
[340] A. Máté, P. Nevai, and V. Totik, Oscillatory behavior of orthogonal polynomials, Proc. Amer. Math. Soc., in press. · Zbl 0585.42024
[341] A. Máté, P. Nevai, and V. Totik, Extensions of Szegö’s theory of orthogonal polynomials, II, Constructive Approximation, in press.
[342] A. Máté, P. Nevai, and V. Totik, Extensions of Szegö’s theory of orthogonal polynomials, III, manuscript. · Zbl 0635.42024
[343] A. Máté, P. Nevai, and V. Totik, Asymptotics for zeros of orthogonal polynomials associated with infinite intervals, J. London Math. Soc., in press.
[344] Máté, A.; Nevai, P.; Zaslavsky, T.: Asymptotic expansion of ratios of coefficients of orthogonal polynomials with exponential weights. Trans. amer. Math. soc. 287, 495-505 (1985) · Zbl 0536.42023
[345] Meixner, J.: The meaning of Christoffel’s sum formula for expansions in orthogonal polynomials. E. B. Christoffel, 160-171 (1981)
[346] Mhaskar, H. N.: Weighted analogues of nikolskii-type inequalities and their applications. Conference in honor of A. Zygmund, 783-801 (1983) · Zbl 0512.42001
[347] H. N. Mhaskar, On the domain of convergence of expansions in polynomials with respect to general weight functions on the whole real line, Acta Math. Acad. Sci. Hungar., in press. · Zbl 0556.30002
[348] Mhaskar, H. N.: Extensions of the Dirichlet-Jordan criterion to a general class of orthogonal polynomial expansions. J. approx. Theory 42, 138-148 (1984) · Zbl 0545.42020
[349] Mhaskar, H. N.: Weighted polynomial approximation. J. approx. Theory 46, 100-110 (1986) · Zbl 0602.41004
[350] Mhaskar, H. N.; Saff, E. B.: Extremal problems for polynomials with Laguerre weights. Approximation theory, IV, 619-624 (1983) · Zbl 0574.41014
[351] Mhaskar, H. N.; Saff, E. B.: Extremal problems for polynomials with exponential weights. Trans. amer. Math. soc. 285, 203-234 (1984) · Zbl 0546.41014
[352] Mhaskar, H. N.; Saff, E. B.: Weighted polynomials on finite and infinite intervals: A unified approach. Bull. amer. Math. soc. (N.S.) 11, 351-354 (1984) · Zbl 0565.41017
[353] Mhaskar, H. N.; Saff, E. B.: Polynomials with Laguerre weights in lp. Lecture notes in math. 1105, 510-523 (1984)
[354] Mhaskar, H. N.; Saff, E. B.: Where does the sup norm of a weighted polynomial live?. Constructive approximation 1, 71-91 (1985) · Zbl 0582.41009
[355] Milne, W. E.: On the degree of convergence of expansions in an infinite interval. Trans. amer. Math. soc. 31, 422-443 (1929) · Zbl 55.0168.01
[356] Milne, W. E.: On the maximum absolute value of the derivative of $exp(-x2)Pn(x)$. Trans. amer. Math. soc. 33, 143-146 (1931) · Zbl 0001.13305
[357] Mityagin, B. S.: Absolute convergence of the series of Fourier coefficients. Soviet math. Dokl. 5, 1083-1086 (1964) · Zbl 0141.25504
[358] Montgomery, H.: The analytic principle of the large sieve. Bull. amer. Math. soc. 84, 547-567 (1976) · Zbl 0408.10033
[359] Muckenhoupt, B.: Mean convergence of Jacobi series. Proc. amer. Math. soc. 24, 306-310 (1970) · Zbl 0182.39701
[360] Muckenhoupt, B.: Mean convergence of Hermite and Laguerre series, I. Trans. amer. Math. soc. 147, 419-431 (1970) · Zbl 0191.07602
[361] Muckenhoupt, B.: Mean convergence of Hermite and Laguerre series, II. Trans. amer. Math. soc. 147, 433-460 (1970) · Zbl 0191.07602
[362] Naîman, P. B.: The set of isolated points of increase of the spectral function of a limit-constant Jacobi matrix. Izv. vyssh. Uchebn. zaved. Mat. 1, 129-135 (1959)
[363] Natanson, I. P.: Constructive function theory. (1964) · Zbl 0133.31101
[364] Nevai, P.: Lagrange interpolation based on the zeros of Laguerre polynomials. Mat. lapok 22, 149-164 (1971) · Zbl 0247.41002
[365] Nevai, P.: Hermite-Fejér interpolation process based on the zeros of Hermite polynomials. Acta math. Acad. sci. Hungar. 23, 247-253 (1972) · Zbl 0246.41006
[366] Nevai, P.: One-sided approximation by polynomials with applications. Acta math. Acad. sci. Hungar. 23, 496-506 (1972)
[367] Nevai, P.: Lagrange interpolation on the real line. Mat. lapok 23, 143-146 (1972) · Zbl 0275.41001
[368] Nevai, P.: Fourier series and interpolation. I. Fourier series and trigonometric Lagrange interpolation. Mat. lapok 23, 261-290 (1972) · Zbl 0288.42003
[369] Nevai, P.: Fourier series and interpolation. II. polynomial Lagrange interpolation. Mat. lapok 24, 49-61 (1973) · Zbl 0348.41008
[370] Nevai, P.: One-sided approximation by polynomials in (0, \infty). Period. math. Hungar. 4, 147-156 (1973) · Zbl 0286.41007
[371] Nevai, P.: On an inequality of G. Freud. Ann. univ. Sci. Budapest eötvös sect. Math. 16, 87-92 (1973)
[372] Nevai, P.: Some properties of orthogonal polynomials corresponding to the weight (1 + x2k)${\alpha} exp(-x2k)$ and their application in approximation theory. Soviet math. Dokl. 14, 1116-1119 (1973) · Zbl 0288.42008
[373] Nevai, P.: Lagrange interpolation based on the zeros of Hermite polynomials. Acta math. Acad. sci. Hungar. 24, 209-213 (1973)
[374] Nevai, P.: Orthogonal polynomials on the real line associated with the weight |x|${\alpha}$ exp(-|x|${\beta}$), I. Acta math. Acad. sci. Hungar. 24, 335-342 (1973) · Zbl 0293.33010
[375] Nevai, P.: On the dini-Lipschitz convergence test. Acta math. Acad. sci. Hungar. 24, 349-351 (1973) · Zbl 0269.42009
[376] Nevai, P.: On convergence of Lagrange interpolation based on Laguerre nodes. Publ. math. Debrecen 20, 235-239 (1973) · Zbl 0273.41001
[377] Nevai, P.: Notes on interpolation. Acta math. Acad. sci. Hungar. 25, 123-144 (1974) · Zbl 0286.41002
[378] Nevai, P.: Localization theorems for convergence of Lagrange interpolation based on the zeros of Hermite polynomials. Acta math. Acad. sci. Hungar. 25, 341-361 (1974)
[379] Nevai, P.: Mean convergence of Lagrange interpolation. J. approx. Theory 18, 363-377 (1976) · Zbl 0426.41001
[380] Nevai, P.: Lagrange interpolation at zeros of orthogonal polynomials. Approximation theory, II, 163-201 (1976) · Zbl 0343.41002
[381] Nevai, P.: Orthogonal polynomials. University of arkansas, lectures notes on mathematics, 65-77 (1977)
[382] Nevai, P.: Orthogonal polynomials. Memoirs amer. Math. soc. 213 (1979) · Zbl 0405.33009
[383] Nevai, P.: On an extremal problem. Proc. amer. Math. soc. 74, 301-306 (1979) · Zbl 0411.42008
[384] Nevai, P.: Bernstein’s inequality in lp for 0 p 1. J. approx. Theory 27, 239-243 (1979) · Zbl 0432.41009
[385] Nevai, P.: On orthogonal polynomials. J. approx. Theory 25, 34-37 (1979) · Zbl 0419.33005
[386] Nevai, P.: An asymptotic formula for the derivatives of orthogonal polynomials. SIAM J. Math. anal. 10, 472-477 (1979) · Zbl 0416.42013
[387] Nevai, P.: Distribution of zeros of orthogonal polynomials. Trans. amer. Math. soc. 249, 341-361 (1979) · Zbl 0413.42016
[388] Nevai, P.: Orthogonal polynomials defined by a recurrence relation. Trans. amer. Math. soc. 250, 369-384 (1979) · Zbl 0413.42015
[389] Nevai, P.: Mean convergence of Lagrange interpolation, II. J. approx. Theory 30, 263-276 (1980) · Zbl 0469.41004
[390] Nevai, P.: Eigenvalue distribution of Toeplitz matrices. Proc. amer. Math. soc. 80, 247-253 (1980) · Zbl 0438.42016
[391] Nevai, P.: Convergence of summability of orthogonal series. Approximation theory, III, 679-685 (1980)
[392] Nevai, P.: Orthogonal polynomials associated with $exp(-x4)$. Canadian math. Soc. conference Proceedings 3, 263-285 (1983)
[393] Nevai, P.: Mean convergence of Lagrange interpolation, III. Trans. amer. Math. soc. 282, 669-698 (1984) · Zbl 0577.41001
[394] Nevai, P.: Asymptotics for orthogonal polynomials associated with $exp(-x4)$. SIAM J. Math. anal. 15, 1177-1187 (1984) · Zbl 0566.42016
[395] Nevai, P.: A new class of orthogonal polynomials. Proc. amer. Math. soc. 91, 409-415 (1984) · Zbl 0572.42019
[396] Nevai, P.: Two of my favorite ways of obtaining asymptotics for orthogonal polynomials. Isnm 65, 417-436 (1984) · Zbl 0628.33009
[397] Nevai, P.: Solution of turán’s problem on divergence of Lagrange interpolation in lp with p 2. J. approx. Theory 43, 190-193 (1985) · Zbl 0562.41003
[398] Nevai, P.: Exact bounds for orthogonal polynomials associated with exponential weights. J. approx. Theory 44, 82-85 (1985) · Zbl 0605.42019
[399] Nevai, P.: Orthogonal polynomials on infinite intervals. Rend. sem. Mat. univ. Politec. Torino, fasc. Spec., 215-236 (1985)
[400] Nevai, P.: Extensions of Szego’s theory of orthogonal polynomials. Lecture notes in mathematics 1171, 230-238 (1985)
[401] Nevai, P.: Letter to a friend. J. approx. Theory 46, 5-8 (1986)
[402] P. Nevai, Necessary conditions for weighted mean convergence of Lagrange interpolation associated with exponential weights, in preparation.
[403] Nevai, P.; Dehesa, J. S.: On asymptotic average properties of zeros of orthogonal polynomials. SIAM J. Math. anal. 10, 1184-1192 (1979) · Zbl 0434.33010
[404] P. Nevai and V. Totik, Weighted polynomial inequalities, Constructive Approximation, in press. · Zbl 0604.41014
[405] P. Nevai and V. Totik, Sharp Nikolskii-type estimates for exponential weights, manuscript. · Zbl 0659.41015
[406] P. Nevai and A. K. Varma, A new quadrature formula associated with the ultraspherical polynomials, J. Approx. Theory, in press. · Zbl 0638.41025
[407] Nevai, P.; Vértesi, P.: Hermite-Fejér interpolation at zeros of generalized Jacobi polynomials. Approximation theory, IV, 629-633 (1983)
[408] Nevai, P.; Vértesi, P.: Mean convergence of Hermite-Fejér interpolation. J. math. Anal. appl. 105, 26-58 (1985) · Zbl 0567.41002
[409] Nevai, P.; Walter, G. G.: Series of orthogonal polynomials as boundary values. SIAM J. Math. anal. 12, 502-513 (1981) · Zbl 0469.33009
[410] Newman, J.; Rudin, W.: Mean convergence of orthogonal series. Proc. amer. Math. soc. 3, 219-222 (1952) · Zbl 0046.29402
[411] Nikolskii, S. M.: Inequalities for entire function of finite order and their application in the theory of differentiate functions of several variables. Proc. Steklov inst. Math. 38, 244-278 (1951)
[412] Novikoff, A.: On a special system of orthogonal polynomials. Doctoral dissertation (1954)
[413] Nuttall, J.: Asymptotics of diagonal Hermite-Padé polynomials. J. approx. Theory 42, 299-386 (1984) · Zbl 0565.41015
[414] J. Nuttall, Further developments on Laguerre’s work on Padé approximants, in ”Orthogonal Polynomials and Their Applications,” (C. Brezinski et al., Eds.), Lecture Notes in Mathematics, Springer-Verlag, Berlin, in press.
[415] J. Nuttall, Asymptotics for generalized Jacobi polynomials, manuscript. · Zbl 0585.41014
[416] Nuttall, J.; Singh, S. R.: Orthogonal polynomials and Padé approximants associated with a system of arcs. J. approx. Theory 21, 1-42 (1977) · Zbl 0355.30004
[417] Olver, F. W. J: Asymptotics and special functions. (1974) · Zbl 0303.41035
[418] O’reilly, E. P.; Weaire, D.: On the asymptotic form of the recursion method basis vectors for periodic Hamiltonians. J. phys. A 17, 2389-2397 (1984) · Zbl 1188.82075
[419] Osilenker, B. P.: On Fourier-pollaczek series. Soviet math. Dokl. 26, 153-156 (1982) · Zbl 0519.42021
[420] Plancherel, M.; Rotach, W.: Sur LES valeurs asymptotiques des polynomes d’hermite $Hn(x)$ = (-1)n $exp( x2 2)$ dn $exp( -x2 2)/dxn$. Comment. math. Helv. 1, 227-254 (1929) · Zbl 55.0799.02
[421] Poincaré, H.: On linear ordinary differential and difference equations. Amer. J. Math. 7, 203-258 (1885) · Zbl 17.0290.01
[422] Pollaczek, F.: Sur une généralisation des polynomes de Legendre. CR acad. Sci. Paris 228, 1363-1365 (1949) · Zbl 0041.03502
[423] Pollaczek, F.: On a four parameter family of orthogonal polynomials. CR acad. Sci. Paris 230, 2254-2256 (1950) · Zbl 0038.22403
[424] Pollaczek, F.: Sur une généralization des polynómes de Jacobi. Mémorial des sciences mathématiques 131 (1956)
[425] Pollard, H.: The mean convergence of orthogonal series of polynomials. Proc. nat. Acad. sci. USA 32, 8-10 (1946) · Zbl 0060.17005
[426] Pollard, H.: The mean convergence of orthogonal series of poynomials, II. Trans. amer. Math. soc. 63, 355-367 (1948) · Zbl 0032.40601
[427] Pollard, H.: The mean convergence of orthogonal series of polynomials, III. Duke math. J. 16, 189-191 (1949) · Zbl 0035.04101
[428] Pólya, G.; Szegö, G.: Problems and theorems in analysis. (1972) · Zbl 0236.00003
[429] Postnikov, A. G.: The remainder term in Hardy and Littlewood’s Tauberian theorem. Dokl. akad. Nauk SSSR 77, 193-196 (1951) · Zbl 0042.06802
[430] Postnikov, A. G.: A Tauberian theorem for Dirichlet series. Dokl. akad. Nauk SSSR 92, 487-490 (1953)
[431] Postnikov, A. G.: English transl.: proc. Steklov inst. Math.. Proc. Steklov inst. Math. 2, 1-138 (1980)
[432] Povcun, L. P.: Divergence of Lagrange interpolation based on the zeros of Laguerre poynomials. Math. notes 21, 443-448 (1977) · Zbl 0365.41002
[433] Povcun, L. P.: On divergence of interpolation processes at a fixed point. Izv. vyssh. Uchebn. zaved. Mat. 3, No. 190, 56-60 (1978) · Zbl 0393.41002
[434] Povcun, L. P.: Fourier-Laguerre series and Lagrange interpolation polynomials. Izv. vyssh. Uchebn. zaved. Mat. 10, No. 221, 80-83 (1980)
[435] Rafal’son, S. Z.: On an asymptotic formula for orthogonal polynomials. Soviet math. Dokl. 7, 1561-1564 (1966)
[436] Rahmanov, E. A.: On the asymptotics of the ratio of orthogonal polynomials. Math. USSR-sb. 32, 199-213 (1977)
[437] Rahmanov, E. A.: Convergence of diagonal Padé approximants. Math. USSR-sb. 33, 243-260 (1977)
[438] Rahmanov, E. A.: On stekloffs conjecture in the theory of orthogonal polynomials. Mat. sb. 108, No. 150, 581-608 (1979)
[439] Rahmanov, E. A.: On the asymptotics of the ratio of orthogonal polynomials, II. Math. USSR-sb. 46, 105-117 (1983)
[440] Rahmanov, E. A.: On asymptotic properties of polynomials orthogonal on the real axis. Soviet math. Dokl. 24, 505-507 (1981)
[441] Rahmanov, E. A.: On asymptotic properties of polynomials orthogonal on the real axis. Math. USSR-sb. 47, 155-193 (1984) · Zbl 0522.42018
[442] Ronveaux, A.: Orthogonal polynomials whose derivatives are quasiorthogonal. CR acad. Sci. Paris sér. A 289, 433-436 (1979)
[443] Ronveaux, A.: Discrete semi-classical orthogonal polynomials. J. approx. Theory 46, 403-407 (1986) · Zbl 0591.42015
[444] Safe, E. B.: Incomplete and orthogonal polynomials. Approximation theory, IV, 219-256 (1983)
[445] Saff, E. B.; Varga, R. S.: On incomplete polynomials, II. Pacific J. Math. 92, 161-172 (1981) · Zbl 0424.41004
[446] Safe, E. B.; Varga, R. S.: On lacunary incomplete polynomials. Math. Z. 177, 297-314 (1981) · Zbl 0438.42011
[447] Sansone, G.: Orthogonal functions. (1959) · Zbl 0084.06106
[448] Sheen, R. C.: Orthogonal polynomials associated with $exp( -x6 6)$. Ph.d. dissertation (1984)
[449] R. C. Sheen, Asymptotics for orthogonal polynomials associated with exp( -x6 6), J. Approx. Theory, in press. · Zbl 0617.42017
[450] Shohat, J. A.: On the asymptotic expressions for Jacobi and legrendre polynomials derived from finite-difference equations. Amer. math. Monthly 33, 354-361 (1926) · Zbl 52.0352.03
[451] Shohat, J. A.: Mechanical quadratures and zeros of Chebyshev polynomials in infinite intervals. CR acad. Sci. Paris 185, 597-598 (1927)
[452] Shohat, J. A.: On a wide class of algebraic continued fractions and the corresponding Chebyshev polynomials. CR acad. Sci. Paris 191, 989-990 (1930)
[453] Shohat, J. A.: Théorie générale des polynómes orthogonaux de tchebichef. Mémorial des sciences mathématiques 66 (1934)
[454] Shohat, J. A.: Development of Stieltjes transforms in continued fractions and Chebyshev polynomials. Rend. circ. Mat. Palermo (2) 47, 25-46 (1937)
[455] Shohat, J. A.: On the convergence properties of Lagrange interpolation based on the zeros of orthogonal tchebycheff polynomials. Ann. of math. (2) 38, 758-769 (1937) · Zbl 0018.11901
[456] Shohat, J. A.: A differential equation for orthogonal polynomials. Duke math. J. 5, 401-417 (1939) · Zbl 65.0285.03
[457] Shohat, J. A.: Applications of orthogonal tchebycheff polynomials to Lagrangean interpolation and to the general theory of polynomials. Ann. mat. Pura appl. 18, 201-238 (1939) · Zbl 0023.02303
[458] Shohat, J. A.; Tamarkin, J. D.: The problem of moments. Math. surveys monogr. No. 1 (1943) · Zbl 0063.06973
[459] Sudan, I. H.: On the numerical evaluation of singular integrals. Bit 18, 91-102 (1978) · Zbl 0386.65002
[460] Sloan, I. H.: Non-polynomial interpolation. J. approx. Theory 39, 97-117 (1983) · Zbl 0519.41002
[461] Sloan, I. H.; Burn, B. J.: Collocation with polynomials for integral equations of the second kind: a new approach to the theory. J. integral equations 1, 77-94 (1979) · Zbl 0445.65110
[462] Sloan, I. H.; Smith, W. E.: Product-integration with the clenshaw-curtis and related points. Numer. math. 30, 415-428 (1978) · Zbl 0367.41015
[463] Sloan, I. H.; Smith, W. E.: Properties of interpolatory product integration rules. SIAM J. Numer. anal. 19, 427-442 (1982) · Zbl 0491.41002
[464] Smirnov, V. I.: Sur LES formules de Cauchy et de Green et quelques problèmes qui s’y ratachent. Izv. akad. Nauk SSSR, 337-372 (1932) · Zbl 58.1076.02
[465] Smirnov, V. I.; Lebedev, N. A.: Functions of a complex variable, constructive theory. (1968) · Zbl 0164.37503
[466] Smith, W. E.; Sloan, I. H.: Product-integration rules based on the zeros of Jacobi polynomials. SIAM J. Numer. anal. 17, 1-13 (1980) · Zbl 0429.41023
[467] Smith, W. E.; Sloan, I. H.; Opie, A. H.: Product integration over infinite intervals. I. rules based on the zeros of Hermite polynomials. Math. comp. 40, 519-535 (1983) · Zbl 0542.65013
[468] Stanton, D.: Orthogonal polynomials and Chevalley groups. Functions: group theoretical aspects and applications, 87-128 (1984)
[469] Suetin, P. K.: V.A. stekloffs problem in the theory of orthogonal polynomials. Itogi nauki i tehniki mat. Anal. (Moscow) 15, 5-82 (1977)
[470] Szegö, G.: On certain special sets of orthogonal polynomials. Proc. amer. Math. soc. 1, 731-737 (1950) · Zbl 0041.39202
[471] Szegö, G.: Orthogonal polynomials. Amer. math. Soc. colloq. Publ. 23 (1975) · Zbl 0305.42011
[472] Szegö, G.: Orthogonal polynomials. (1962) · Zbl 0100.28405
[473] Szegö, G.: Raskey collected papers. Collected papers (1982)
[474] Sz.-Nagy, B.: Über die konvergenz von reihen orthogonaler polynome. Math. nachr. 4, 50-55 (1951) · Zbl 0042.07301
[475] Sz.-Nagy, B.; Strausz, A.: On a Bohr-type inequality. MTA mat. Term. tud. Értesitöje 57, 121-135 (1938) · Zbl 64.1046.01
[476] Tandori, K.: Über die cesàrosche summierbarkeit der orthogonalen polynomreihe, I. Acta math. Acad. sci. Hungar. 3, 73-82 (1952) · Zbl 0047.30403
[477] Tandori, K.: Über die cesàrosche summierbarkeit der orthogonalen polynomreihe, II. Acta math. Acad. sci. Hungar. 5, 236-253 (1954) · Zbl 0059.05303
[478] Thompson, D. J.: Spectrum estimation and harmonic analysis. Proc. IEEE 70, 1055-1096 (1982)
[479] Timan, A. F.: Theory of approximation of functions of a real variable. (1963) · Zbl 0117.29001
[480] Turán, P.: On the zeros of the polynomials of Legendre. Câsopis Pêst. Mat. a fys. 75, 113-122 (1950) · Zbl 0040.32303
[481] Turán, P.: On some problems in the theory of mechanical quadrature. Mathematica (Cluj) 8, No. 41, 182-192 (1966) · Zbl 0171.31102
[482] Turán, P.: On orthogonal polynomials. Anal. math. 1, 297-311 (1975) · Zbl 0331.42006
[483] Turán, P.: On some open problems of approximation theory. J. approx. Theory 29, 23-85 (1980) · Zbl 0454.41001
[484] Ullman, J. L.: On weighted tchebycheff polynomials. Orthogonal expansions and their continuous analogues, 51-53 (1968)
[485] Ullman, J. L.: On the regular behavior of orthogonal polynomials. Proc. London math. Soc. (3) 24, 119-148 (1972) · Zbl 0232.33007
[486] Ullman, J. L.: Orthogonal polynomials for general measures. Collection of papers dedicated to iliev, sofia, 493-496 (1975)
[487] Ullman, J. L.: Orthogonal polynomials associated with an infinite interval. Michigan math. J. 27, 353-363 (1980) · Zbl 0455.33004
[488] Ullman, J. L.: On orthogonal polynomials associated with an infinite interval. Aproximation theory III, 889-895 (1980)
[489] Ullman, J. L.: A survey of exterior asymptotics for orthogonal polynomials associated with a finite interval and a study of the case of the general weight measures. Proceedings, NATO advanced study inst. On approximation theory (1983)
[490] Ullman, J. L.: Orthogonal polynomials for general measures, I. Lecture notes in mathematics 1105, 524-528 (1984)
[491] J. L. Ullman, A generalization of Blumenthal’s theorem on the three term recursion relationship for orthogonal polynomials, manuscript.
[492] J. L. Ullman, Polynomials orthogonal on the infinite interval, abstract. · Zbl 0455.33004
[493] Ullman, J. L.; Wyneken, M. F.; Ziegler, L.: Norm oscillatory weight measures. J. approx. Theory 46, 204-212 (1986) · Zbl 0614.42010
[494] Uspensky, J. V.: On the convergence of quadrature formulas related to an infinite interval. Trans. amer. Math. soc. 26, 542-559 (1928) · Zbl 54.0280.02
[495] Van Assche, W.: Asymptotic properties of orthogonal polynomials form their recurrence formula, I. J. approx. Theory 44, 258-276 (1985) · Zbl 0583.42011
[496] Van Assche, W.: Weighted zero distribution for polynomials orthogonal on an infinite interval. SIAM J. Math. anal. 16, 1317-1334 (1985) · Zbl 0593.33010
[497] Van Assche, W.; Teugels, J. L.: Second order asymptotic behaviour of the zeros of orthogonal polynomials. Rev. roumaine math. Pures appl. 32 (1987) · Zbl 0626.33008
[498] Van Doorn, E. A.: On oscillation properties and the interval of orthogonality of orthogonal polynomials. SIAM J. Math. anal. 15, 1031-1042 (1984) · Zbl 0551.42009
[499] Van Rossum, H.: Systems of orthogonal and quasi-orthogonal polynomials connected with the Padé table, I. Nederl. akad. Wetensch. proc. Ser. A 58, 517-525 (1955) · Zbl 0067.29301
[500] Van Rossum, H.: Systems of orthogonal and quasi-orthogonal polynomials connected with the Padé table, II. Nederl. akad. Wetensch. proc. Ser. A 58, 526-534 (1955) · Zbl 0067.29301
[501] Van Rossum, H.: Systems of orthogonal and quasi-orthogonal polynomials connected with the Padé table, III. Nederl. akad. Wetensch. proc. Ser. A 58, 675-682 (1955) · Zbl 0067.29301
[502] Vértesi, P.: Hermite-Fejér interpolations, IV. Acta math. Acad. sci. Hungar. 39, 83-93 (1982)
[503] Walsh, J. L.: Interpolation and approximation by rational functions in the complex domain. Amer. math. Soc. colloq. Publ. 20 (1960) · Zbl 0106.28104
[504] Whitley, R.: Markov and Bernstein’s inequalities, and compact and strictly singular operators. J. approx. Theory 34, 277-285 (1982) · Zbl 0487.41015
[505] Widom, H.: Extremal polynomials associated with a system of curves in the complex plane. Adv. in math. 3, 127-232 (1969) · Zbl 0183.07503
[506] Widom, H.: The strong Szego limit theorem for circular arcs. Indiana univ. Math. J. 21, 277-283 (1971) · Zbl 0213.34903
[507] Widom, H.: Asymptotic behavior of block Toeplitz matrices and determinants. Adv. in math. 13, 284-322 (1974) · Zbl 0281.47018
[508] Widom, H.: On the limit of block Toeplitz determinants. Proc. amer. Math. soc. 50, 167-173 (1975) · Zbl 0312.47027
[509] Widom, H.: Asymptotic behavior of block Toeplitz matrices and determinants, II. Adv. in math. 21, 1-29 (1974) · Zbl 0344.47016
[510] Widom, H.: Szego’s limit theorem: the higher dimensional matrix case. J. funct. Anal. 39, 182-198 (1980) · Zbl 0465.47034
[511] Wilf, H. S.: Finite sections of some classical inequalities. (1970) · Zbl 0199.38301
[512] Wilson, J. A.: Hypergeometric series, recurrence relations and some new orthogonal functions. Ph.d. dissertation (1978)
[513] Wilson, J. A.: Some hypergeometric orthogonal polynomials. SIAM J. Math. anal. 11, 690-701 (1980) · Zbl 0454.33007
[514] Wing, G. M.: The mean convergence of orthogonal series. Amer. J. Math. 72, 792-808 (1950) · Zbl 0045.33801
[515] Zalik, R. A.: Inequalities for weighted polynomials. J. approx. Theory 37, 137-146 (1983) · Zbl 0508.41012
[516] Zayed, A. I.: Laguerre series as boundary values. SIAM J. Math. anal. 13, 263-279 (1982) · Zbl 0483.30025
[517] Zayed, A. I.; Walter, G. G.: Series of orthogonal polynomials as hyper-functions. SIAM J. Math. anal. 13, 664-675 (1982) · Zbl 0497.33013
[518] Ziegler, L. R.: Norm and zero asymptotics for extremal polynomials. Ph.d. dissertation (1977)
[519] Zygmund, A.: Trigonometric series. 1 (1977) · Zbl 0367.42001
[520] Zygmund, A.: Trigonometric series. 2 (1977) · Zbl 0367.42001