Error estimates for two-phase Stefan problems in several space variables. I: Linear boundary conditions. (English) Zbl 0606.65084

The enthalpy formulation of two-phase Stefan problems, with linear boundary conditions, is approximated by \(C^ 0\)-piecewise linear finite elements in space and backward-differences in time combined with a regularization procedure. Error estimates of \(L^ 2\)-type are obtained. For general regularized problems an order \(\epsilon^{1/2}\) is proved, while the order is shown to be \(\epsilon\) for non-degenerate cases. For discrete problems an order \(h^ 2\epsilon^{-1}+h+\tau \epsilon^{- }+\tau^{2/3}\) is obtained. These orders impose the relations \(\epsilon \sim \tau \sim h^{4/3}\) for the general case and \(\epsilon \sim h\sim \tau^{2/3}\) for non-degenerate problems, in order to obtain rates of convergence \(h^{2/3}\) or h respectively. Besides, an order \(h| \log h| +\tau^{1/2}\) is shown for finite element meshes with certain approximation property. Also continuous dependence of discrete solutions upon the data is proved.


65Z05 Applications to the sciences
65N15 Error bounds for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35K05 Heat equation
80A17 Thermodynamics of continua
35R35 Free boundary problems for PDEs
Full Text: DOI


[1] A. Berger, H. Brezis, J. Rogers,A numerical method for solving the problem u t f(u)=0, R.A.I.R.O. Anal. Numér. 13 (1979), 297–312. · Zbl 0426.65052
[2] L. Caffarelli, L. Evans,Continuity of the temperature in the two-phase Stefan problems, Arch. Rational Mech. Anal., (81),3 (1983), 199–220. · Zbl 0516.35080
[3] J. R. Cannon, E. Di Benedetto,An N-dimensional Stefan problem with non-linear boundary conditions, S.I.A.M. J. Math. Anal. 11 (1980), 632–645. · Zbl 0459.35090
[4] L. Cermak, M. Zlamal,Transformation of dependent variables and the finite element solution of non-linear evolution equations, Internat. J. Numer. Methods Engrg., 15 (1980), 31–40. · Zbl 0444.65078 · doi:10.1002/nme.1620150104
[5] P. Ciarlet,The finite element method for elliptic problems, (1978) North Holland. · Zbl 0383.65058
[6] A. Damlamian,Some results in the multiphase Stefan problem, Comm. Partial Differential Equations, (2),10 (1977), 1017–1044. · Zbl 0399.35054 · doi:10.1080/03605307708820053
[7] E. Di Benedetto,Continuity of weak-solutions to certain singular parabolic equations, Ann. Mat. Pura Appl. IV, 130 (1982), 131–176. · Zbl 0503.35018 · doi:10.1007/BF01761493
[8] E. Di Benedetto,A boundary modulus of continuity for a class of singular parabolic equations, (to appear).
[9] T. Dupont,Some L 2 error estimates for parabolic Galerkin methods, The mathematical foundations of the finite element method with applications to Partial Differential Equations, (1972), Academic Press, 491–504.
[10] G. Duvaut,The solution of a two-phase Stefan problem by, a variational inequality, Moving boundary problems in heat flow and diffusion, (1975), Clarendon Press, Oxford, 173–191.
[11] J. F. Epperson,An error estimate for changing the Stefan problems, S.I.A.M.J. Numer. Anal., 19 (1982), 114–120. · Zbl 0481.65076 · doi:10.1137/0719004
[12] M. Fremond,The solution of a two-phase Stefan problem by a variational inequality, Moving boundary problems in heart flow and diffusion, (1975), Clarendon Press, Oxford, 173–191.
[13] A. Friedman,The Stefan problem in several space variables, Trans. Amer. Math. Soc., 133 (1968), 51–87. · Zbl 0162.41903 · doi:10.1090/S0002-9947-1968-0227625-7
[14] J. Jerome,Approximation of non-linear evolution systems, (1983) Academic Press. · Zbl 0512.35001
[15] J. Jerome, M. Rose,Error estimates for the multidimensional two-phase Stefan problem, Math. Comp., 39, 160 (1982), 377–414. · Zbl 0505.65060 · doi:10.1090/S0025-5718-1982-0669635-2
[16] S. Kamenomostskaya,On the Stefan problem, Mat. Sb., 53 (1961), 489–514. · Zbl 0102.09301
[17] O. Ladyzenskaya, V. Solonnikov, N. Ural’ceva,Linear and Quasilinear Equations of Parabolic Type, Trans. Math. Monographs (1968).
[18] J. L. Lions, E. Magenes,Non homogeneous boundary value problems and applications, Vol. I, (1972), Springer. · Zbl 0227.35001
[19] E. Magenes,Problemi di Stefan bifase in più variabili spaziali, V.S.A.F.A., Catania, Le Matematiche, XXXVI (1981), 65–108.
[20] G. Meyer,Multidimensional Stefan problems, S.I.A.M.J. Numer., Anal., 10 (1973), 522–538. · Zbl 0256.65054 · doi:10.1137/0710047
[21] M. Niezgodka, I. Pawlow,A generalized Stefan problem in several space variables, Appl. Math. Optim., 9 (1983), 193–224. · Zbl 0519.35079 · doi:10.1007/BF01460125
[22] R. H. Nochetto,Análisis numérico del problema de Stefan multidimensional a dos fases por el método de regularización, Tesis en Ciencias Matemáticas, Univ. of Buenos Aires (1983).
[23] R. H. Nochetto,A class of non-degenerate two-phase Stefan problems in several space vatiables, Preprint n. 442, Istituto di Analisi Numerica del C.N.R., Pavia (1985).
[24] J. Ortega, W. Rheinboldt,Iterative solution of non linear equations in several variables, (1970), Academic Press. · Zbl 0241.65046
[25] I. Pawlow,Approximation of an evolution variational inequality arising from free boundary problems, Ann. Mat. Pura Appl. IV, 131 (1982), 333–373. · Zbl 0506.35061 · doi:10.1007/BF01765160
[26] A. Schatz, L. Wahlbin,On the quasi-optimality in L of the H 1 o-projection into finite element spaces, Math. Comp., 38 (1982), 1–22. · Zbl 0483.65006
[27] E. Shamir,Regularization of mixed second-order elliptic problems, Israel J. Math., (6),2 (1968), 150–168. · Zbl 0157.18202 · doi:10.1007/BF02760180
[28] G. Strang,Approximation in the finite element method, Numer. Math. 19 (1972), 81–98. · Zbl 0221.65174 · doi:10.1007/BF01395933
[29] C. Verdi,On the numerical approach to a two-phase Stefan problem with non-linear flux, (to appear in Calcolo). · Zbl 0612.65084
[30] A. Visintin,Sur le problem de Stefan avec flux non linèaire, Boll. Un. Mat. Ital., C(5), 18, n. 1 (1981), 63–86. · Zbl 0471.35078
[31] M. F. Wheeler,A priori L 2 error estimates for Galerkin approximations to parabolic partial differential equations, S.I.A.M.J. Numer. Anal., 10 (1973), 723–759. · doi:10.1137/0710062
[32] R. E. White,An enthalpy formulation of the Stefan problem, S.I.A.M.J. Numer. Anal., 19 (1982), 1129–1157. · Zbl 0501.65058 · doi:10.1137/0719082
[33] R. E. White,A numerical solution of the enthalpy formulation of the Stefan problem, S.I.A.M.J. Numer. Anal., 19 (1982), 1158–1172. · Zbl 0501.65059 · doi:10.1137/0719083
[34] M. Zlamal,A finite element solution of the non linear heat equation, R.A.I.R.O. Anal. Numér., (14),2 (1980), 203–216. · Zbl 0442.65103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.