Rubinstein, Reuven Y.; Marcus, Ruth Efficiency of multivariate control variates in Monte Carlo simulation. (English) Zbl 0606.65100 Oper. Res. 33, 661-677 (1985). This paper considers some statistical aspects of applying control variates to achieve variance reduction in the estimation of a vector of response variables in Monte Carlo simulation. It gives a result that quantifies the loss in variance reduction caused by the estimation of the optimal control matrix. For the one-dimensional case, we derive analytically the optimal size of the vector of control variates under specific assumptions on the covariance matrix. For the multidimensional case, our numerical results show that good variance reduction is achieved when the number of control variates is relatively small (approximately of the same order as the number of unknown parameters). Finally, we give some recommendations for future research. Cited in 28 Documents MSC: 65C99 Probabilistic methods, stochastic differential equations 65C05 Monte Carlo methods 62J10 Analysis of variance and covariance (ANOVA) 62F99 Parametric inference Keywords:multivariate control variates; variance reduction; Monte Carlo simulation; optimal control matrix PDF BibTeX XML Cite \textit{R. Y. Rubinstein} and \textit{R. Marcus}, Oper. Res. 33, 661--677 (1985; Zbl 0606.65100) Full Text: DOI