zbMATH — the first resource for mathematics

Classification of maximal rank curves in the liaison class \(L_ n\). (English) Zbl 0607.14015
\({\mathbb{L}}_ n\) is the liaison class corresponding to a Hartshorne-Rao module which is n-dimensional in one component and zero elsewhere. A complete list of the possible degrees in each possible shift of the module is given for curves in this class, and also for maximal rank curves. It is shown that for each shift there exists a smooth curve of minimal degree. Smooth maximal rank curves in the class are completely classified in terms of the numerical character of their plane sections, thus generalizing a result of Gruson and Peskine about arithmetically normal curves.

14H99 Curves in algebraic geometry
14M99 Special varieties
14N05 Projective techniques in algebraic geometry
Full Text: DOI EuDML
[1] [AM] Amasaki, M.: On the structure of arithmetically Buchsbaum curves in ?3. Publ. Res. Inst. Math. Sci.20, 793-837 (1984) · Zbl 0574.14030
[2] [BE] Ballico, E., Ellia, P.: The maximal rank conjecture for non-special curves in ?3. Invent. math.79, 541-555 (1985) · Zbl 0556.14007
[3] [BO1] Bolondi, G.: Arithmetically normal sheaves. Bull. Soc. Math. Fr.115, 71-95 (1987) · Zbl 0639.14008
[4] [BO2] Bolondi, G.: Liaison and maximal rank. Boll. Unione Mat. Ital. IV. Ser. Sez.92, 38-52 (1986) · Zbl 0719.14034
[5] [BO3] Bolondi, G.: On the classification of curves linked to two skew lines. Proceedings of the Conference ?Algebraic Geometry? (Berlin, Teubner-Texte zur Mathematik. Leipzig: Teubner 1986 · Zbl 0626.14035
[6] [BSV] Bresinsky, H., Schenzel, P., Vogel, W.: On liaison, arithmetical Buchsbaum curves and monomial curves in ?3. J. Algebra86, 283-301 (1984) · Zbl 0532.14016
[7] [CO] Coanda, I.: The Chern classes of the stable rank 3 vector bundles on ?3. Math. Ann.273, 65-79 (1985) · Zbl 0588.14010
[8] [GMV] Geramita, A., Maroscia, P., Vogel, W.: A note on arithmetically Buchsbaum curves in ?3. Queen’s University Preprint No. 1983-24
[9] [GP] Gruson, L., Peskine, C.: Genre des courbes de l’espace projectif. In: Algebraic Geometry Proceedings (Tromsø, 1977). Lect. Notes Math. 68, 31-59. Berlin, Heidelberg, New York: Springer 1978
[10] [HA1] Hartshorne, R.: On the classification of algebraic space curves. In: Vector Bundles and Differential Equations, 83-112 (Nice, 1979). Basel, Birkhäuser 1980
[11] [HA2] Hartshorne, R.: Stable reflexive sheaves. Math. Ann.254, 121-176 (1980) · Zbl 0437.14008
[12] [HA3] Hartshorne, R.: Stable reflexive sheaves 2. Invent. math.66, 165-190 (1982) · Zbl 0519.14008
[13] [H1] Hirschowitz, A.: Existence de faisceaux réfléxifs de rang 2 sur ?3 à bonne cohomologie. Université de Nice. Prepublication Mathématiques No. 114 (1986)
[14] [LR] Lazarsfeld, R., Rao, P.: Linkage of general curves of large degree. In: Algebraic geometry ? open problems (Ravello, 1981). Lect. Notes Math. 997, 267-289. Berlin, Heidelberg, New York: Springer 1983
[15] [MI1] Migliore, J.: Topics in the theory of liaison of space curves. Ph.D. Thesis, Brown University (1983)
[16] [MI2] Migliore, J.: Geometric invariants for liaison of space curves. J. Algebra99, 548-572 (1986) · Zbl 0596.14020
[17] [MI3] Migliore, J.: Buchsbaum curves in ?3. Proceedings of the Conference ?Algebraic Geometry? (Berlin), Teubner-Texte zur Mathematik. Nr. 92, 259-266. Leipzig: Teubner 1986
[18] [RAO] Rao, P.: Liaison among curves in ?3. Invent. math.50, 205-217 (1979) · Zbl 0406.14033
[19] [SCH] Schwartau, P.: Liaison addition and monomial ideals. Ph.D. Thesis, Brandeis University (1982)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.