Isometries for the Legendre-Fenchel transform. (English) Zbl 0607.49009

It is shown that the Legendre-Fenchel transform on the cone of proper lower semicontinuous convex functions on the Hilbert space X is an isometry with respect to some metrics which are equivalent to the epi- topology if X is finite-dimensional, and stronger than the Mosco-epi- topology in the infinite dimensional setting.
Reviewer: T.Zolezzi


49J45 Methods involving semicontinuity and convergence; relaxation
49N15 Duality theory (optimization)
58E30 Variational principles in infinite-dimensional spaces
47H05 Monotone operators and generalizations
49J40 Variational inequalities
52A05 Convex sets without dimension restrictions (aspects of convex geometry)
90C31 Sensitivity, stability, parametric optimization
54A10 Several topologies on one set (change of topology, comparison of topologies, lattices of topologies)
Full Text: DOI


[1] R. A. Wijsman, Convergence of sequences of convex sets, cones and functions. II, Trans. Amer. Math. Soc. 123 (1966), 32 – 45. · Zbl 0146.18204
[2] Umberto Mosco, On the continuity of the Young-Fenchel transform, J. Math. Anal. Appl. 35 (1971), 518 – 535. · Zbl 0253.46086
[3] J.-L. Joly, Une famille de topologies sur l’ensemble des fonctions convexes pour lesquelles la polarité est bicontinue, J. Math. Pures Appl. (9) 52 (1973), 421 – 441 (1974) (French). · Zbl 0282.46005
[4] K. Back, Continuity of the Fenchel transform of convex functions, Tech. Report, Northwestern University, November 1983. · Zbl 0605.46011
[5] David W. Walkup and Roger J.-B. Wets, Continuity of some convex-cone-valued mappings, Proc. Amer. Math. Soc. 18 (1967), 229 – 235. · Zbl 0145.38004
[6] R. J.-B. Wets, Convergence of convex functions, variational inequalities and convex optimization problems, Variational inequalities and complementarity problems (Proc. Internat. School, Erice, 1978) Wiley, Chichester, 1980, pp. 375 – 403.
[7] Hédy Attouch and Roger J.-B. Wets, A convergence theory for saddle functions, Trans. Amer. Math. Soc. 280 (1983), no. 1, 1 – 41. · Zbl 0525.49009
[8] H. Attouch, Variational convergence for functions and operators, Applicable Mathematics Series, Pitman (Advanced Publishing Program), Boston, MA, 1984. · Zbl 0561.49012
[9] Hédy Attouch, Familles d’opérateurs maximaux monotones et mesurabilité, Ann. Mat. Pura Appl. (4) 120 (1979), 35 – 111 (French, with English summary). · Zbl 0416.47019
[10] Jean-Jacques Moreau, Proximité et dualité dans un espace hilbertien, Bull. Soc. Math. France 93 (1965), 273 – 299 (French). · Zbl 0136.12101
[11] R. T. Rockafellar, Convex analysis, Princeton Univ. Press, Princeton, N. J., 1969. · Zbl 0186.23901
[12] R. T. Rockafellar, Extension of Fenchel’s duality theorem for convex functions, Duke Math. J. 33 (1966), 81 – 89. · Zbl 0138.09301
[13] Haïm Brézis, Intégrales convexes dans les espaces de Sobolev, Proceedings of the International Symposium on Partial Differential Equations and the Geometry of Normed Linear Spaces (Jerusalem, 1972), 1972, pp. 9 – 23 (1973) (French, with English summary).
[14] A. Fougères and A. Truffert, Régularisation-s.c.i. et epi-convergence: approximations inf-convolutives associées à un référentiel, AVAMAC 84-08, Université Perpignan, 1984.
[15] L. Hörmander, Sur la fonction d’appui des ensembles convexes dans un espace localement convexe, Ark. Mat. 3 (1954), 181-186. · Zbl 0064.10504
[16] Umberto Mosco, Convergence of convex sets and of solutions of variational inequalities, Advances in Math. 3 (1969), 510 – 585. · Zbl 0192.49101
[17] Gabriella Salinetti and Roger J.-B. Wets, On the convergence of sequences of convex sets in finite dimensions, SIAM Rev. 21 (1979), no. 1, 18 – 33. · Zbl 0421.52003
[18] R. T. Rockafellar and R. Wets, Extended real analysis (to appear). · Zbl 0346.90057
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.