zbMATH — the first resource for mathematics

Mixed Petrov-Galerkin methods for the Timoshenko beam problem. (English) Zbl 0607.73076
A new mixed Petrov-Galerkin method is presented for the Timoschenko beam problem. The method has enhanced stability compared to the Galerkin formulation, allowing new combinations of interpolation, in particular, equal-order stress and displacement fields. The methodology is easily generalizable for multi-dimensional Hellinger-Reissner systems.

74S05 Finite element methods applied to problems in solid mechanics
65K10 Numerical optimization and variational techniques
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
Full Text: DOI
[1] Arnold, D.N., Discretization by finite elements of a model parameter dependent problem, Numer. math., 37, 405-421, (1981) · Zbl 0446.73066
[2] Babuška, I., Error bounds for finite element method, Numer. math., 16, 322-333, (1971) · Zbl 0214.42001
[3] Brezzi, F., On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers, RAIRO anal. numér., R-2, 129-151, (1974) · Zbl 0338.90047
[4] Brooks, A.N.; Hughes, T.J.R., Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. meths. appl. mech. engrg., 32, 199-259, (1982) · Zbl 0497.76041
[5] Girault, V.; Raviart, P.A., Finite element approximation of the Navier-Stokes equations, (), 749 · Zbl 0396.65070
[6] Hellinger, E., Der allgemeine ansatz der mechanik der kontinua, (), 602-694, (4)
[7] Hughes, T.J.R.; Brooks, A.N., A theoretical framework for Petrov-Galerkin methods with discontinous weighting functions: application to the streamline upwind procedure, (), 46-65
[8] Hughes, T.J.R.; Franca, L.P.; Balestra, M., A new finite element formulation for computational fluid dynamics: V. circumventing the babuska-Brezzi condition: A stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations, Comput. meths. appl. mech. engrg., 59, 85-99, (1986) · Zbl 0622.76077
[9] Hughes, T.J.R.; Mallet, M., A new finite element formulation for computational fluid dynamics: III. the generalized streamline operator for multidimensional advection-diffusion systems, Comput. meths. appl. mech. engrg., 58, 305-328, (1986) · Zbl 0622.76075
[10] Hughes, T.J.R.; Mallet, M., A new finite element formulation for computational fluid dynamics: IV. A discontinuity-capturing operator for multidimensional advective-diffusive systems, Comput. meths. appl. mech. engrg., 58, 329-336, (1986) · Zbl 0587.76120
[11] Hughes, T.J.R.; Mallet, M.; Franca, L.P., Entropy-stable finite element methods for compressible fluids: application to high Mach number flows with shocks, (), 761-773
[12] Hughes, T.J.R.; Mallet, M.; Franca, L.P., New finite element methods for the compressible Euler and Navier-Stokes equations, (), 339-360 · Zbl 0678.76069
[13] Johnson, C., Streamline diffusion methods for problems in fluid mechanics, (), 251-261
[14] Johnson, C.; Saranen, Streamline diffusion methods for the incompressible Euler and Navier-Stokes equations, Math. comput., 47, 1-18, (1986) · Zbl 0609.76020
[15] Johnson, C.; Nävert, U.; Pitkäranta, J., Finite element methods for linear hyperbolic problems, Comput. meths. appl. mech. engrg., 45, 285-312, (1985) · Zbl 0526.76087
[16] Loula, A.F.D.; Hughes, T.J.R.; Franca, L.P., Petrov-Galerkin formulations of the Timoshenko beam problem, Comput. meths. appl. mech. engrg., 63, 115-132, (1987), (this issue). · Zbl 0645.73030
[17] Oden, J.T.; Carey, G.F., Finite elements: mathematical aspects IV, (1983), Prentice-Hall Englewood Cliffs, NJ · Zbl 0496.65055
[18] Reissner, E., On a variational theorem in elasticity, J. math. phys., 29, 2, 90-95, (1950) · Zbl 0039.40502
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.