zbMATH — the first resource for mathematics

Saltwater intrusion modeling: Verification and application to an agricultural coastal arid region in Oman. (English) Zbl 1246.86008
Summary: This paper deals with numerical modeling of density-dependent flow of saltwater intrusion in coastal groundwater systems. We present the implementation of an approach to solve a moving boundary problem for a dynamic water table within an invariant finite element mesh. The model is successfully validated against laboratory experiment data for an unconfined, density-dependent benchmark. The validated software is applied to a regional-scale study area and sufficiently calibrated for a steady state of pre-development conditions. Transient mass transport scenario simulations show good concordance with salinity measurements satisfyingly supporting the model setup.

86-08 Computational methods for problems pertaining to geophysics
76S05 Flows in porous media; filtration; seepage
Full Text: DOI
[1] Xue, Y.Q.; Zhang, Y.; Ye, S.J.; Wu, J.C.; Li, Q.F., Land subsidence in China, Environmental geology, 48, 6, 713-720, (2005)
[2] P.M. Barlow, Ground Water in Freshwater-Saltwater Environments of the Atlantic Coast, Technical Report 1262, US Geological Survey Virginia, 2003.
[3] Cardona, A.; Carrillo-Rivera, J.; Huizar-lvarez, R.; Graniel-Castro, E., Salinization in coastal aquifers of arid zones: an example from santo domingo, baja California sur, Mexico, Environmental geology, 45, 350-366, (2004)
[4] Narayan, K.A.; Schleeberger, C.; Bristow, K.L., Modelling seawater intrusion in the burdekin delta irrigation area, north queensland, Australia, Agricultural water management, 89, 3, 217-228, (2007)
[5] Simmons, C.T., Variable density groundwater flow: from current challenges to future possibilities, Hydrogeology journal, 13, 116-119, (2005)
[6] Abd-Elhamid, H.; Javadi, A., A density-dependant finite element model for analysis of saltwater intrusion in coastal aquifers, Journal of hydrology, 401, 3-4, 259-271, (2011)
[7] Graf, T.; Degener, L., Grid convergence of variable-density flow simulations in discretely-fractured porous media, Advances in water resources, 34, 6, 760-769, (2011)
[8] Werner, A.D.; Ward, J.D.; Morgan, L.K.; Simmons, C.T.; Robinson, N.I.; Teubner, M.D., Vulnerability indicators of sea water intrusion, Ground water, (2011)
[9] Datta, B.; Vennalakanti, H.; Dhar, A., Modeling and control of saltwater intrusion in a coastal aquifer of andhra pradesh, India, Journal of hydro-environment research, 3, 3, 148-159, (2009)
[10] Park, C.H.; Aral, M., Saltwater intrusion hydrodynamics in a tidal aquifer, ASCE journal of hydrologic engineering, 13, 9, 863-872, (2008)
[11] Giambastiani, B.M.; Antonellini, M.; Oude Essink, G.H.; Stuurman, R.J., Saltwater intrusion in the unconfined coastal aquifer of ravenna Italy: a numerical model, Journal of hydrology, 340, 1-2, 91-104, (2007)
[12] Mazzia, A.; Putti, M., Three-dimensional mixed finite element-finite volume approach for the solution of density-dependent flow in porous media, Journal of computational and applied mathematics, 185, 2, 347-359, (2006) · Zbl 1075.76041
[13] Beinhorn, M.; Dietrich, P.; Kolditz, O., 3-D numerical evaluation of density effects on tracer tests, Journal of contaminant hydrology, 81, 1-4, 89-105, (2005)
[14] Mazzia, A.; Putti, M., Mixed-finite element and finite volume discretization for heavy brine simulations in groundwater, Journal of computational and applied mathematics, 147, 1, 191-213, (2002) · Zbl 1058.76034
[15] Diersch, H.J.; Kolditz, O., Variable-density flow and transport in porous media: approaches and challenges, Advances in water resources, 25, 8-12, 899-944, (2002)
[16] Desai, C., Finite element residual schemes for unconfined flow, International journal for numerical methods in engineering, 10, 1415-1418, (1975) · Zbl 0351.76111
[17] Desai, C.S.; Li, G.C., A residual flow procedure and application for free surface flow in porous media, Advances in water resources, 6, 27-35, (1983)
[18] Sugio, S.; Desai, C.S., Residual flow procedure for sea water intrusion in unconfined aquifers, International journal for numerical methods in engineering, 24, 8, 1439-1450, (1987) · Zbl 0619.76117
[19] Aral, M.M.; Tang, Y., A new boundary element formulation for time-dependent confined and unconfined aquifer problems, Water resources research, 24, 6, 831-842, (1988)
[20] MacDonald, T.R.; Kitanidis, P.K., Modeling the free surface of an unconfined aquifer near a recirculation well, Groundwater, 31, 5, 774-778, (2005)
[21] McElwee, C.; Kemblowski, M., Theory and application of an approximate model of saltwater upconing in aquifers, Journal of hydrology, 115, 139-163, (1990)
[22] Meenal, M.; Eldho, T., Simulation of groundwater flow in unconfined aquifer using meshfree point collocation method, Engineering analysis with boundary elements, 35, 4, 700-707, (2011) · Zbl 1259.76052
[23] Goswami, R.R.; Clement, T.P., Laboratory-scale investigation of saltwater intrusion dynamics, Water resources research, 43, (2007)
[24] Kolditz, O.; Bauer, S.; Bilke, L.; Böttcher, N.; Delfs, J.; Fischer, T.; Görke, U.; Kalbacher, T.; Kosakowski, G.; McDermott, C.; Park, C.; Radu, F.; Rink, K.; Shao, H.; Shao, H.; Sun, F.; Sun, Y.; Singh, A.; Taron, J.; Walther, M.; Wang, W.; Watanabe, N.; Wu, Y.; Xie, M.; Xu, W.; Zehner, B., Opengeosys: an open source initiative for numerical simulation of THMC processes in porous media, Environmental Earth science, (2012)
[25] Kalbacher, T.; Delfs, J.; Shao, H.; Wang, W.; Walther, M.; Samaniego, L.; Schneider, C.; Musolff, A.; Centler, F.; Sun, F.; Hildebrandt, A.; Liedl, R.; Borchardt, D.; Krebs, P.; Kolditz, O., The IWAS-toolbox: software coupling for an integrated water resources management, Environmental Earth science, 65, 5, 1367-1380, (2011)
[26] Boussinesq, J., Recherches thoriques sur lcoulement des nappes deau infiltres dans le sol et sur le dbit des sources, Journal de mathématiques pures et appliquées 5me series, 10, 5-78, (1904) · JFM 35.0761.01
[27] Bear, J., Dynamics of fluids in porous media, () · Zbl 1191.76001
[28] Seawat. Homepage, 2011. http://water.usgs.gov/ogw/seawat/.
[29] H.R. Henry, Salt intrusion into coastal aquifers, Ph.D. Thesis, Columbia University, New York, USA, 1960.
[30] Tanaka, K., Self-diffusion coefficients of water in pure water and in aqueous solutions of several electrolytes with 18O and 2H as tracers, Journal of chemical society, Faraday transactions 1, 74, 1879-1881, (1978)
[31] Kempers, L.J.T.M.; Haas, H., The dispersion zone between fluids with different density and viscosity in a heterogeneous porous medium, Journal of fluid mechanics, 267, 299-324, (1994)
[32] Musuuza, J.L.; Radu, F.A.; Attinger, S., The effect of dispersion on the stability of density-driven flows in saturated homogeneous porous media, Advances in water resources, 34, 3, 417-432, (2011)
[33] University of Texas Libraries, Small Map of Oman, 2010. http://www.lib.utexas.edu/maps/oman.html.
[34] S. Al-Shaqsi, The Socio-Economic and Cultural Aspects in the Implementation of Water Demand Management: A Case Study in The Sultanate of Oman, Master’s thesis, University of Nottingham, 2004.
[35] Ministry of agriculture and fisheries. Bureau de Recherches Gologiques et Minires, Study of a New Organization of Irrigation in Barka-Rumais Area, Data Analysis and Modelling Report, Technical Report, 1992.
[36] S.S.M. Al-Shoukri, Mathematical Modeling of Groundwater Flow in Wadi Ma’awil Catchment, Barka in Sultanate of Oman. Master’s thesis; Arabian Gulf University, Bahrain, 2008.
[37] Gerner, A.; Schmitz, G., Portrayal of fuzzy recharge areas for water balance modelling—a case study in northern oman, Advances in geosciences, (2011), accepted
[38] Bakalowicz, M., Karst groundwater: a challenge for new resources, Hydrogeology journal, 13, 148-160, (2005), 10.1007/s10040-004-0402-9
[39] P.G. Macumber, The cable tool program and groundwater flow in the eastern batinah alluvial aquifer, Technical Report, Ministry of Water Resources, Oman, 1998.
[40] Geuzaine, C.; Remacle, J.F., Gmsh: a 3-D finite element mesh generator with built-in pre- and post-processing facilities, International journal for numerical methods in engineering, 79, 11, 1309-1331, (2009) · Zbl 1176.74181
[41] M. Walther, N. Böttcher, R. Liedl, A 3d interpolation algorithm for layered tilted geological formations using an adapted inverse distance weighting approach. in: Proceedings ModelCARE2011, IAHS Publ. 3XX, 201X. Leipzig, Germany, 2012 (in press).
[42] Eilers, V.; Carter, R.; Rushton, K., A single layer soil water balance model for estimating deep drainage potential recharge: an application to cropped land in semi-arid north – east nigeria, Geoderma, 140, 1-2, 119-131, (2007)
[43] Brunsdon, C., Estimating probability surfaces for geographical point data: an adaptive kernel algorithm, Computers & geosciences, 21, 7, 877-894, (1995)
[44] J. Doherty, R. Hunt, Approaches to highly parameterized inversion—A guide to using PEST for groundwater-model calibration, Technical Report, US Geological Survey Scientific Investigations Report 2010-5169, 2010.
[45] Gallagher, M.; Doherty, J., Parameter estimation and uncertainty analysis for a watershed model, Environmental modelling & software, 22, 7, 1000-1020, (2007)
[46] El Yaouti, F.; El Mandour, A.; Khattach, D.; Kaufmann, O., Modelling groundwater flow and advective contaminant transport in the bou-areg unconfined aquifer NE morocco, Journal of hydro-environment research, 2, 3, 192-209, (2008)
[47] Li, H.; Brunner, P.; Kinzelbach, W.; Li, W.; Dong, X., Calibration of a groundwater model using pattern information from remote sensing data, Journal of hydrology, 377, 1-2, 120-130, (2009)
[48] Sun, F.; Shao, H.; Kalbacher, T.; Wang, W.; Yang, Z.; Huang, Z.; Kolditz, O., Groundwater drawdown at nankou site of Beijing plain: model development and calibration, Environmental Earth sciences, 64, 5, 1323-1333, (2011), 10.1007/s12665-011-0957-4
[49] Gelhar, L.W.; Welty, C.; Rehfeldt, K.R., A critical review of data on field-scale dispersion in aquifers, Water resources research, 28, 7, 1955-1974, (1992)
[50] Ministry of regional municipalities, environment and water resources, Water Resources in Oman, Technical Report, 2005.
[51] Grundmann, J.; Schütze, N.; Schmitz, G.H.; Al-Shaqsi, S., Towards an integrated arid zone water management using simulation based optimisation, Environmental Earth science, (2012)
[52] Musuuza, J.L.; Radu, F.A.; Attinger, S., The stability of density-driven flows in saturated heterogeneous porous media, Advances in water resources, 34, 11, 1464-1482, (2011)
[53] Delfs, J.; Park, C.; Kolditz, O., A sensitivity analysis of Hortonian flow, Advances in water resources, 32, 9, 1386-1395, (2009)
[54] Philipp, A.; Schmitz, G.; Liedl, R., An analytical model of surge flow in non-prismatic permeable channels and its application in arid regions, Journal of hydraulic engineering, 136, 5, 290-298, (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.