zbMATH — the first resource for mathematics

Estimations de Schauder et régularité Höldérienne pour une classe de problèmes aux limites singuliers. (Schauder estimates and Hölder regularity for a class of singular boundary value problems). (French) Zbl 0608.35026
We give Schauder estimates and Hölder regularity for a class of singular boundary value problems. The technics used is an adaption of the classical Peetre’s method based on a tangential Fourier transformation, but what is necessary for this technics is a tangential harmonic analysis of Hölder spaces.

35J70 Degenerate elliptic equations
35B45 A priori estimates in context of PDEs
35B65 Smoothness and regularity of solutions to PDEs
35J40 Boundary value problems for higher-order elliptic equations
Full Text: DOI
[1] DOI: 10.1002/cpa.3160120405 · Zbl 0093.10401
[2] Baouendi M. S., C.P.A.M. 29 pp 70– (1974)
[3] Bolley P., Bull. Soc. Mat. France, mèmoire 34 pp 55– (1973)
[4] Bolley P., J. Math. Pures et APPl.
[5] J.M. Bony : ”Interaction des singularitds pour les equations de Klein–Gordon non–linèaires”. Sèminaire Goualouic–Meyer–Schwartz 1983–84, exposè no X.
[6] Boutet De Monvel L., Symposia Mathematica 7 pp 381– (1971)
[7] DOI: 10.1007/BF01982354 · Zbl 0426.35043
[8] M. Damlakhi : Thèse d’ètat, Orsay 1983.
[9] Debbaj 0., Thèse d’ètat, Rennes (1983)
[10] Goulaouic C., Annali Scoula Normale Sup. Pisa (1983)
[11] DOI: 10.1080/03605308308820279 · Zbl 0527.35032
[12] Grusin V. V., Mat. Sbornik 80 pp 455– (1969)
[13] Horiuichi T., Existence and uniqueness of classical solutions for certain degenerated elliptic equations of second order
[14] Langlais L., On the bounded solutions of some degenerate elliptic problems · Zbl 0566.35052
[15] Lions J. L., Tome 1 (1968)
[16] Lojasiewicz S., Studia Math. 16 pp 1– (1957)
[17] Lucquin B., Orsay (1984)
[18] Sebastiase Silva J., Portugali Mathematica 19 (1960)
[19] Shimakura N., J. Math. Kyoto University 9 pp 275– (1969)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.