Caginalp, Gunduz An analysis of a phase field model of a free boundary. (English) Zbl 0608.35080 Arch. Ration. Mech. Anal. 92, 205-245 (1986). The paper presents a new approach to solidification problems by assuming that the free boundary arising from a phase transition is not a sharp interface but has finite thickness. Assuming a free energy of Landau- Ginzburg from and relaxation-type dynamics, the author constructs a nonlinearly coupled parabolic system for temperature and phase function as mathematical model. The global existence of a unique solution is proved by constructing invariant regions for the system, and regularity results of Schauder type are obtained. An asymptotic analysis leads to the Gibbs-Thompson condition which relates the temperature at the interface to the surface tension and curvature. Reviewer: J.Sprekels Cited in 16 ReviewsCited in 294 Documents MSC: 35R35 Free boundary problems for PDEs 35K55 Nonlinear parabolic equations Keywords:solidification problems; phase transition; nonlinearly coupled parabolic system; global existence; unique solution; invariant regions; regularity; Gibbs-Thompson condition; surface tension; curvature PDF BibTeX XML Cite \textit{G. Caginalp}, Arch. Ration. Mech. Anal. 92, 205--245 (1986; Zbl 0608.35080) Full Text: DOI OpenURL References: [1] L. I. Rubinstein, ”The Stefan Problem” · Zbl 0434.35086 [2] J. R. Ockendon & W. R. Hodgkins, eds., Moving Boundary Problems in Heat Flow and Diffusion, Oxford Univ. Press, Oxford (1975). [3] D. G. Wilson, A. D. Solomon, & P. T. Boggs, eds., Moving Boundary Problems, Academic Press, New York (1978). [4] A. Fasano & M. Primicerio, eds., Proce. Montecatini Symposium on Free and Moving Boundary Problems, Springer, Berlin Heidelberg New York (1981). [5] C. M. Elliott & J. R. Ockendon, Weak and Variational Methods for Moving Boundary Problems, Pitman Publishing, London (1982). · Zbl 0476.35080 [6] A. Friedman, Variational Principles and Free-Boundary Problems, John Wiley and Sons, New York (1982). · Zbl 0564.49002 [7] O. A. Oleinik, ”A Method of Solution of the General Stefan Prob [8] I.I. Kolodner, ”Free Boundary Problem for the Heat Equation with Applications to Problems of Change of Phase” · Zbl 0070.43803 [9] A. Friedman, ”The Stefan Problem in Several Space Variables”, · Zbl 0162.41903 [10] A. Friedman, ”Analyticity of the Free Boundary for the Stefan Problem”, Ar · Zbl 0329.35034 [11] D. Kinderlehrer & L. Nirenberg, ”The Smoothness of the Free Boundary in the One Phase Stefan Problem” · Zbl 0391.35060 [12] L. I. Rubinstein, ”The Stefan Problem: Comments on its Present State · Zbl 0434.35086 [13] L. A. Caffarelli, ”Continuity of the Temperature in the Stefan Problem” · Zbl 0406.35032 [14] L. A. Caffarelli, ”Some Aspects of the One Phase Stefan Problem”, Indiana Univ. Math. J, 27 (1980), 73–77. · Zbl 0393.35064 [15] L. A. Caffarelli & L. C. Evans, ”Continuity of the Temperature for the Two Phase Stefan Problem”, Arch. Rational Mech. Anal, (to appear). · Zbl 0516.35080 [16] J. Chad Am & P. Ortoleva, ”The Stabilizing Effect of Surface Tension on the Development of Free Boundaries”, Proc. Montecatini Symposium on Free and Moving Boundary Problems, Springer, Berlin Heidelberg New York (1981). [17] B. Chalmers, Principles of Solidification, R. E. Krieger Publishing, Huntington, New York (1977). [18] P. Hartman, Crystal Growth: An Introduction, North-Holland Publishing, Amsterdam (1973). [19] J. W. Gibbs, Collected Works, Yale University Press, New Haven, (1948). · Zbl 0031.13504 [20] D. W. Hoffman & J. W. Cahn, ”A Vector Thermodynamics for Anisotropic Surfaces I. Fundamentals and Application to Plane Surface Junct [21] J. W. Cahn & D. W. Hoffman, ”A Vector Thermodynamics for Anisotropic Surfaces II. Curved and Faceted Surfac [22] W. W. Mullins, ”The Thermodynamics of Crystal Phases with Curved Interfaces: Special Case of Interface Isotropy and Hydrostatic Pressure”, Proc. Int. Conf. on Solid-Solid Phase Transformations, H. I. Erinson, et al., eds., TMS-AIME, Warrendale, Pennsylvania (1983). [23] W. W. Mullins, ”Thermodynamic Equilibrium of a Crystal Sphere in a Fluid”, J. Chem. Phys. 81 (1984), 1436–1442. [24] L. D. Landau & E. M. Lifshitz, Statistical Physics, Addison-Wesley Publishing, Reading, Massachusetts (1958). · Zbl 0080.19702 [25] C. J. Thompson, Mathematical Statistical Mechanics, MacMillan Co., New York (1972). · Zbl 0244.60082 [26] H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena, Oxford University Press, Oxford (1971). [27] J. W. Cahn & J. E. Hilliard, ”Free Energy of a Nonuniform System I. Interfacial Free E [28] J. W. Cahn & J. E. Hilliard, ”Free Energy of a Nonuniform System III. Nucleation in a Two Componente Incompressible [29] J. S. Langer, ”Theory of the Condensation Poi [30] P. C. Hohenberg & B. I. Halperin, ”Theory of Dynamic Critical Phenomena”, R [31] G. Fix & J. T. Lin, Paper in preparation. [32] W. W. Mullins & R. F. Sekerka, ”Morphological Stability of a Particle Growing by Diffusion or Heat F [33] W. W. Mullins & R. F. Sekerka, ”Stability of a Planar Interface During Solidification of a Dilute Binary Al [34] J. R. Ockendon, ”Linear and Non-linear Stability of a Class of Moving Boundary Problems”, Proc. Sem. Pavia 1979 Technoprint [35] J. Smith, ”Shape Instabilities and Pattern Formation in Solidification: A New Method for Numerical Solution of the Moving Boundary Prob · Zbl 0463.65080 [36] J. Smoller, Shock Waves and Reaction –Diffusion Equations, Springer-Verlag, Berlin Heidelberg New York (1983). · Zbl 0508.35002 [37] H. Weinberger, ”Invariant Sets for Weakly Coupled Parabolic and Ellipti [38] K. Chueh, C. Conley, & J. Smoller, ”Positively Invariant Regions for Systems of Nonlinear Diffusion Equations” · Zbl 0368.35040 [39] J. Bebernes, K. Chueh, & W. Fulks, ”Some Applications of Invariance for Parabolic Systems” · Zbl 0402.35056 [40] N. Alikakos, ”An Application of the Invariance Principle to Reaction-Diffusion Equa · Zbl 0386.34046 [41] H. Amann, ”Invariant Sets and Existence Theorems for Semilinear Parabolic and Elliptic Systems · Zbl 0387.35038 [42] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Inc., Englewood Cliffs, New Jersey (1964). · Zbl 0144.34903 [43] D. Gilbarg & N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin Heidelberg New York (1977). · Zbl 0361.35003 [44] O. A. Ladyzenskaya, V. A. Solonnikov. & N. N. Uralceva, ”Linear and Quasilinear Equations of Parabolic Type”, Trans. of Math. Monographs 23, American Mathematical Society, Providence (1968). [45] S. D. Eidelman, Parabolic Systems, North Holland Publishing, Amsterdam (1969). [46] M. S. Berger & L. E. Fraenkel, ”On the Asymptotic Solution of a Nonlinear Dirichlet Pr [47] P. Fife & W. M. Greenlee, ”Interior Transition Layers for Elliptic Boundary Value Problems with a Small Parameter · Zbl 0309.35035 [48] A. Van Harten, ”Nonlinear Singular Perturbation Problems: Proofs of Correctness of a Formal Approximation Based on a Contraction Principle in a Banach Space · Zbl 0393.34037 [49] F. A. Howes, ”Boundary-interior Layer Interactions in Nonlinear Singular Perturbation Theory · Zbl 0385.34010 [50] M. S. Berger, Nonlinearity and Functional Analysis, Academic Press, New York (1977). · Zbl 0368.47001 [51] K. Yosida, Functional Analysis, Springer-Verlag, Berlin Heidelberg New York (1965). · Zbl 0126.11504 [52] N. Hicks, Notes on Differential Geometry, Van Nostrand, Princeton, New Jersey (1965). · Zbl 0132.15104 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.