Daubechies, Ingrid; Grossmann, A.; Meyer, Y. Painless nonorthogonal expansions. (English) Zbl 0608.46014 J. Math. Phys. 27, 1271-1283 (1986). In a Hilbert space \({\mathcal H}\), discrete families of vectors \(\{h_ j\}\) with the property that \(f=\sum_{j}<h_ j| f>h_ j\) for every f in \({\mathcal H}\) are considered. This expansion formula is obviously true if the family is an orthonormal basis of \({\mathcal H}\), but also can hold in situations where the \(h_ j\) are not mutually orthogonal and are ”overcomplete”. The two classes of examples studied here are (i) appropriate sets of Weyl-Heisenberg coherent states, based on certain (non-Gaussian) fiducial vectors, and (ii) analogous families of affine coherent states. It is believed, that such ”quasiorthogonal expansions” will be a useful tool in many areas of theoretical physics and applied mathematics. Cited in 8 ReviewsCited in 584 Documents MSC: 46C99 Inner product spaces and their generalizations, Hilbert spaces 46B15 Summability and bases; functional analytic aspects of frames in Banach and Hilbert spaces Keywords:orthonormal basis; overcomplete; Weyl-Heisenberg coherent states; affine coherent states; quasiorthogonal expansions × Cite Format Result Cite Review PDF Full Text: DOI References: [1] DOI: 10.1090/S0002-9947-1952-0047179-6 · doi:10.1090/S0002-9947-1952-0047179-6 [2] DOI: 10.1137/0515056 · Zbl 0578.42007 · doi:10.1137/0515056 [3] DOI: 10.1137/0515056 · Zbl 0578.42007 · doi:10.1137/0515056 [4] DOI: 10.1063/1.526761 · Zbl 0571.22021 · doi:10.1063/1.526761 [5] DOI: 10.1063/1.526761 · Zbl 0571.22021 · doi:10.1063/1.526761 [6] DOI: 10.1063/1.526761 · Zbl 0571.22021 · doi:10.1063/1.526761 [7] DOI: 10.1016/0034-4877(71)90006-1 · doi:10.1016/0034-4877(71)90006-1 [8] Perelomov A. M., Teor. Mat. Fiz. 6 pp 213– (1971) [9] DOI: 10.1103/PhysRevB.12.1118 · doi:10.1103/PhysRevB.12.1118 [10] DOI: 10.1103/PhysRevB.12.1118 · doi:10.1103/PhysRevB.12.1118 [11] DOI: 10.1063/1.1664833 · Zbl 0184.54601 · doi:10.1063/1.1664833 [12] DOI: 10.1063/1.526072 · doi:10.1063/1.526072 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.