×

zbMATH — the first resource for mathematics

Hardy-Littlewood theory for semigroups. (English) Zbl 0608.47047
Some well-known inequalities for the diffusion heat equation are generalized on the case of symmetric submarkovian semigroups. Some applications for other semigroups are presented.
Reviewer: A.L.Davidowicz

MSC:
47D07 Markov semigroups and applications to diffusion processes
47D03 Groups and semigroups of linear operators
47B38 Linear operators on function spaces (general)
47A30 Norms (inequalities, more than one norm, etc.) of linear operators
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Deny, J, Potential theory, (July 2-10, 1969), C.I.M.E., Ier cycle Stresa
[2] Fukushima, M, Dirichlet forms and Markov processes, (1980), North-Holland/Kodansha Amsterdam · Zbl 0422.31007
[3] Stein, E.M, Topics in harmonic analysis related to Littlewood-Paley theory, (1970), Princeton Univ. Press Princeton, N.J · Zbl 0193.10502
[4] Varopoulus, N.Th, C. R. acad. sci. ser. I math., 298, 465-468, (1984)
[5] Varopoulos, N.Th, Isoperimetric inequalities and Markov chains, J. func. analysis, 63, 215-239, (1985) · Zbl 0573.60059
[6] Varopoulos, N.Th, C. R. acad. sci. ser. I math., 298, 233-236, (1984)
[7] Varopoulos, N.Th, C. R. acad. sci. ser. I math., 299, 651-654, (1984)
[8] Yosida, K, Functional analysis, (1978), Springer-Verlag Berlin/New York · Zbl 0152.32102
[9] Duren, P.L, Theory of Hp spaces, (1970), Academic Press New York · Zbl 0215.20203
[10] Stein, E.M, Singular integrals and differentiability properties of functions, (1971), Princeton Univ. Press Princeton, N.J
[11] Herz, C.S, J. math. mech., 18, No. (4), 283-324, (1968)
[12] \scS. Y. Cheng, P. Li, and S. T. Yay. Amer. J. Math.\bf103, No. 5, 1021-1063.
[13] Moser, J, Comm. pure appl. math., XVII, (1964)
[14] Moser, J, Comm. pure appl. math., XXIV, (1971)
[15] Hardy, G.H; Littlewood, J.E, J. reine angew. math., 167, 405-423, (1932)
[16] Duren, P.L; Romberg, B.W; Shields, A.L, Reine angew. math., 238, 32-60, (1969)
[17] Folland, G.B; Stein, E.M, Hardy spaces on homogeneous groups, () · Zbl 0508.42025
[18] \scR. W. Goodman, “Nilpotent Lie Groups,” Lecture Notes in Math., Vol. 562, Springer-Verlag, Berlin/New York. · Zbl 0336.57015
[19] Bishop, R.L; Crittenden, R.J, Geometry on manifolds, (1964), Academic Press New York · Zbl 0132.16003
[20] Varopoulos, N.Th, J. funct. anal., 44, 359-380, (1981)
[21] Osserman, R, Bull. amer. math. soc., 84, No. 6, 1192-1197, (1978)
[22] Yau, S.-T, Ann. sci. ecole norm. sup., 8, 487-507, (1975), (4)
[23] Lohoue, N, C. R. acad. sci. ser A, 290, 605-608, (1980)
[24] Varopoulos, N.Th, A potential theoretic property of soluble groups, Bull. sci. math., 108, No. 3, 263-273, (1984) · Zbl 0546.60008
[25] Zygmund, A, ()
[26] Neveu, J, Martingales a temps discret, (1972), Masson & Cie Paris
[27] Cheeger, J; Gromov, M; Taylor, M, J. differential geometry, 17, 17-53, (1982)
[28] Varopoulos, N.Th, C. R. acad. sci. ser. I math., (1985)
[29] \scN. Th. Varopoulos, Analysis on nilpotent groups, preprint.
[30] Davies, E.B; Simon, B, J. funct. anal., 59, No. 2, 335-395, (1985)
[31] Varopoulos, N.Th, C. R. acad. sci. ser. I math., 300, 62-617, (1985)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.