Płuciennik, Ryszard On some properties of the superposition operator in generalized Orlicz spaces of vector-valued functions. (English) Zbl 0608.47068 Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 25, 321-337 (1985). The author proves some continuity and boundedness results for the superposition operator \(Fx(s)=f(s,x(s))\) in Orlicz spaces which are parallel to those given by M. A. Krasnosel’skij and Ya. B. Rutitskij in their book ”Convex functions and Orlicz spaces” (1961; Zbl 0095.091), with two important generalizations: first, the functions x are allowed to take values in a separable reflexive Banach space; second, the Young function which generates the Orlicz space is ”variable” (i.e. non- autonomous), and thus one has to use the general setting of modular spaces [see e.g. J. Musielak, Orlicz spaces and modular spaces, Lect. Notes Math. 1034 (1983; Zbl 0557.46020)]. Reviewer’s remark: Further boundedness results for the superposition operator are given by the same author in Bull. Pol. Acad. Sci. Math. 33, 531-540 (1985; Zbl 0587.46027). Reviewer: J.Appell Cited in 1 ReviewCited in 4 Documents MSC: 47H99 Nonlinear operators and their properties 46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.) Keywords:continuity; boundedness; superposition operator; Orlicz spaces; Young function; modular spaces Citations:Zbl 0095.091; Zbl 0557.46020; Zbl 0587.46027 PDF BibTeX XML Cite \textit{R. Płuciennik}, Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 25, 321--337 (1985; Zbl 0608.47068) OpenURL