Kestřánek, Zdenĕk Variational inequalities in plasticity with strain-hardening - Equilibrium finite element approach. (English) Zbl 0608.73040 Apl. Mat. 31, 270-281 (1986). (From Author’s summary.) In the work the incremental finite element method is applied to find the numerical solution of the plasticity problem with strain-hardening. The stress field is approximated by equilibrium triangular elements with linear functions. The field of the strain-hardening parameter is considered to be piecewise linear. The resulting nonlinear optimization problem with constraints is solved by the Lagrange multipliers method with additional variables. A comparison of the results obtained with an experiment is given. Reviewer: J.Lovíšek Cited in 1 Document MSC: 74S30 Other numerical methods in solid mechanics (MSC2010) 74C99 Plastic materials, materials of stress-rate and internal-variable type 49J40 Variational inequalities 49M29 Numerical methods involving duality Keywords:incremental finite element method; strain-hardening; equilibrium triangular elements; nonlinear optimization problem with constraints; Lagrange multipliers method; additional variables × Cite Format Result Cite Review PDF Full Text: DOI References: [1] C. Johnson: On Plasticity with Hardening. J. Math. Anal. Appl., Vol. 62, 1978, pp. 325-336. · Zbl 0373.73049 · doi:10.1016/0022-247X(78)90129-4 [2] I. Hlaváček J. Nečas: Mathematical Theory of Elastic and Elasto-Plastic Bodies. Elsevier, Amsterdam, 1981. [3] I. Hlaváček: A Finite Element Solution for Plasticity with Strain-Hardening. R.A.I.R.O. Numerical Analysis, V. 14, No. 4, 1980, pp. 347-368. [4] Nguyen Quoc Son: Matériaux élastoplastiques écrouissable. Arch. Mech. Stos., V. 25, 1973, pp. 695-702. · Zbl 0332.73039 [5] B. Halphen, Nguyen Quoc Son: Sur les matériaux standard généralisés. J. Mécan., V. 14, 1975, pp. 39-63. · Zbl 0308.73017 [6] C. Johnson: A Mixed Finite Element Method for Plasticity Problems with Hardening. S.I.A.M. J. Numer. Anal., V. 14, 1977, pp. 575-583. · Zbl 0374.73039 · doi:10.1137/0714037 [7] Z. Kestřánek: A Finite Element Solution of Variational Inequality of Plasticity with Strain-Hardening. Thesis, Czechoslovak Academy of Sciences, 1982 [8] V. B. Watwood B. J. Hartz: An Equilibrium Stress Field Model for Finite Element Solution of Two-Dimensional Elastostatic Problems. Inter. J. Solids Structures, V. 4, 1968, pp. 857-873. · Zbl 0164.26201 · doi:10.1016/0020-7683(68)90083-8 [9] M. Avriel: Nonlinear Programming. Analysis and Methods. Prentice-Hall, New York, 1976. · Zbl 0361.90035 [10] P. S. Theocaris E. Marketos: Elastic-Plastic Analysis of Perforated Thin Strips of a Strain-Hardening Material. J. Mech. Phys. Solids, 1964, V. 12, pp. 377-390. · doi:10.1016/0022-5096(64)90033-X [11] C. Johnson: On Finite Element Methods for Plasticity Problems. Numer. Math., V. 26, 1976, pp. 79-84. · Zbl 0355.73035 · doi:10.1007/BF01396567 [12] M. Křížek: An Equilibrium Finite Element Method in Three-Dimensional Elasticity. Apl. Mat., V. 27, No. 1, 1982. [13] D. M. Himmelblau: Applied Nonlinear Programming. McGraw-Hill, New York, 1972. · Zbl 0241.90051 [14] M. S. Bazaraa C. M. Shetty: Nonlinear Programming. Theory and Algorithms. John Wiley and Sons, New York, 1979. · Zbl 0476.90035 [15] P. E. Gill W. Murrey: Numerical Methods for Constrained Optimization. Academic Press, London, 1974. [16] B. M. Irons: A Frontal Solution Program for Finite Element Analysis. Intern. J. for Numer. Meth. in Eng., V. 2, 1970. · Zbl 0252.73050 · doi:10.1002/nme.1620020104 [17] K. Schittkowski: The Nonlinear Programming Method cf Wilson, Han and Powell with an Augmented Lagrangian Type Line Search Function. Part 1, 2. Numer. Math,, V. 38, No. 1, 1981. · Zbl 0534.65030 · doi:10.1007/BF01395810 [18] A. Samuelsson M. Froier: Finite Elements in Plasticity. A Variational Inequality Approach. Proc. MAFELAP 1978, Academic Press, London, 1979. · Zbl 0437.73058 [19] J. Céa: Optimisation, théorie et algorithmes. Dunod, Paris, 1971. · Zbl 0211.17402 [20] O. L. Mangasarian: Nonlinear Programming 3, 4. Academic Press, New York, 1978, 1981. [21] Z. Kestřánek: Variational Inequalities in Plasticity - Dual Finite Element Approach. Proc. MAFELAP 1984, Academic Press, London, 1984. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.