×

Values of Dirichlet series associated with modular forms at the points \(s=1/2\), 1. (English) Zbl 0609.10024

Translation from Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova 134, 117-137 (Russian) (1984; Zbl 0535.10030).

MSC:

11F67 Special values of automorphic \(L\)-series, periods of automorphic forms, cohomology, modular symbols

Citations:

Zbl 0535.10030
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] J. L. Waldspurger, ?Sur les coefficients de Fourier des formes modulaires de points demi-entiers,? J. Math Pures Appl.,60, No. 4, 375?484 (1981). · Zbl 0431.10015
[2] W. Kohnen and D. Zagier, ?Values of L-series of modular forms at the center of the critical strip,? Invent. Math.,64, No. 2, 175?198 (1981). · Zbl 0468.10015
[3] A. I. Vinogradov and L. A. Takhtadzhyan, ?Analogues of the Gauss-Vinogradov formula on a half-line,? in: Differential Geometry, Lie Groups, and Mechanics. III, J. Sov. Math.,24, No. 2 (1984). · Zbl 0534.10039
[4] M. Jutila, ?On the mean value of L(1/2, ?) for real characters,? Analysis,1, No. 2, 149?161 (1981). · Zbl 0485.10029
[5] M. Jutila, ?On character sums and class numbers,? J. Number Theory,5, No. 3, 203?214 (1973). · Zbl 0257.10015
[6] G. Shimura, ?On modular forms of half integral weight,? Ann. Math.,97, No. 3, 440?481 (1973). · Zbl 0266.10022
[7] A. Selberg, ?On the estimation of Fourier coefficients of modular forms,? in: Proc. Sympos. Pure Math., Vol. 8, Number Theory, Providence, R.I. (1965), p. 1?15. · Zbl 0142.33903
[8] R. A. Rankin, ?Contributions to the theory of Ramanujan’s function ?(n) and similar arithmetical functions. II. The order of the Fourier coefficients of the integral modular forms,? Proc. Camb. Philos. Soc,35, No. 3, 357?372 (1939). · Zbl 0021.39202
[9] D. Goldfeld and C. Viola, ?Mean values of L-functions associated to elliptic, Fermat and other curves at the centre of the critical strip,? J. Number Theory,11, No. 3, 305?320 (1979). · Zbl 0409.10029
[10] A. Walfisz, ?Uber die Koeffizientensummen einiger Modulformem,? Math. Ann.,108, No. 1, 75?90 (1933). · JFM 59.0213.02
[11] E. Landau, ?Uber die Anzahl der Gitterpunkte in gewissen Bereichen. (Zweite Abhand-lung),? Nachr. der Gesellschaft der Wiss. zu Gottingen, Math. -Phys. Kl., 209?243 (1915). (Reprinted in: E. Landan, Augewählte Abhandlungen zur Gitterpunktlehre, Berlin, 1962, pp. 30?64). · JFM 45.0312.02
[12] A. Weil, ?Uber die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen,? Math. Ann.,168, 149?156 (1967). · Zbl 0158.08601
[13] Wen-Ch’ing. W. Li, ?New forms and functional equations,? Math. Ann.,212, No. 4, 285?315 (1975). · Zbl 0278.10026
[14] M. Jutila, ?On mean values of Dirichlet polynomials with real characters,? Acta Arith.,27, 191?198 (1975). · Zbl 0261.10028
[15] H. Davenport, Multiplicative Number Theory [in Russian], Moscow (1971). · Zbl 0221.10038
[16] A. P. Ogg, ?On a convolution of L-series,? Invent. Math.,7, No. 4, 297?312 (1969). · Zbl 0205.50902
[17] A. Perelli and G. Puglisi, ?Real zeros of general L-functions,? Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis., Mat. e Natur.,70, No. 1, 69?74 (1981(1982)). · Zbl 0506.10034
[18] Y. Z. Flicker, ?Automorphic forms on covering groups of GL(2),? Invent. Math.,57, No. 2, 119?182 (1980). · Zbl 0431.10014
[19] B. W. Jones and G. Pall, ?Regular and semiregular positive ternary quadratic forms,? Acta. Math.,70, 165?191 (1939). · JFM 65.0141.02
[20] A. N. Andrianov, ?On the analytic arithmetic of quadratic forms with an odd number of variables connected with the theory of modular forms,? Dokl. Akad. Nauk SSSR,145, No. 2, 241?244 (1962). · Zbl 0133.29801
[21] M. Eichler, ?Quaternäre quadratische Formen und die Riemannsche Vermutung für die Kon-gruenzzetafunktionene,? Arch. Math.,5, No. 4?6, 355?366 (1954). · Zbl 0059.03804
[22] P. Ponomarev, ?Ternary quadratic forms and Shimura’s correspondence,? Nagoya Math. J.,81, 123?151 (1981). · Zbl 0452.10030
[23] Yu. V. Linnik, ?A general theorem on the representation of numbers by separate ternary quadratic forms,? Izv. Akad. Nauk SSSR, Ser. Mat.,3, No. 1, 87?108 (1939).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.