zbMATH — the first resource for mathematics

Réduction d’Albanèse d’un morphisme propre et faiblement Kählerian. I, II: Groupes d’automorphismes relatifs. (French) Zbl 0609.32008
A relative torus is a morphism \(T\to S\) of reduced analytic spaces which is, generically on S, a submersion whose fibers are affine complex tori. The Albanese reduction of a proper surjective morphism \(X\to S\) is a relative torus \(A\to S\) such that each morphism of (X,S) in a relative torus factorizes uniquely through (A,S).
In the first paper, the author establishes the existence of the Albanese reduction for a proper surjective, weakly Kählerian morphism. In the second paper, he introduces the notion of relative automorphism group of a proper surjective morphism and establishes the existence of decomposition into linear and toroidal parts for the relative automorphism group of a weakly Kählerian morphism. He studies also the obstruction to algebraicity for morphisms with algebraic fibers.
Reviewer: G.Roos

32C15 Complex spaces
32M99 Complex spaces with a group of automorphisms
32J99 Compact analytic spaces
14E99 Birational geometry
Full Text: Numdam Numdam EuDML
[1] D. Barlet : Espace analytique réduit des cycles analytiques complexes compacts d’un espace analytique complexe . Séminaire Norguet. Lecture Notes in Math. 482, 1-158. · Zbl 0331.32008
[2] D. Barlet : Majoration du volume et forme géométrique du théorème d’aplatissement . C.R.A.S. 288 (1979) 29-31. · Zbl 0457.32015
[3] A. Blanchard : Sur les variétés analytiques complexes . Ann. Sc. E.N.S. 73 (1958) 157-202. · Zbl 0073.37503
[4] F. Campana : Images directes de cycles par un morphisme . Séminaire Norguet IV. Lecture Notes in Math. 807, 25-65. · Zbl 0436.32017
[5] F. Campana : Algébricité et compacité dans l’espace des cycles . Math. Ann. 251 (1980) 7-18. · Zbl 0445.32021
[6] F. Campana : Réduction algébrique d’un morphisme propre et faiblement Kählérien . Math. Ann. 256 (1981), 157-190. · Zbl 0461.32010
[7] F. Campana : Coréduction algébrique d’un espace analytique faiblement Kählérien compact . Inv. Math. 63 (1981) 187-223. · Zbl 0436.32024
[8] A. Fujiki : On automorphism groups of compact Kähler manifolds . Inv. Math. 44 (1978) (1978) 225-258. · Zbl 0367.32004
[9] A. Fujiki : Closedness of the Douady space of a compact Kähler space . Publ. Res. Inst. Math. Sc. 14 (1978) 1-52. · Zbl 0409.32016
[10] A. Grothendieck : Exposé 232 du Séminaire Bourbaki . |
[11] K. Ueno : Classification theory of algebraic varieties and compact complex spaces . Lecture Notes 439 (1975). · Zbl 0299.14007
[12] D. Liebermann : Compactness of the Chow Scheme . Lecture Notes 670 (1978). · Zbl 0391.32018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.