zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Two-dimensional Schrödinger operator: inverse scattering transform and evolutional equations. (English) Zbl 0609.35082
From the authors’ abstract: The inverse problem for the two-dimensional Schrödinger operator on the data from one energy level is solved in a special class of ”finite-zone” or ”algebraic” operators. This class seems to be dense among all smooth periodic Schrödinger operators. Evolutional equations associated with this problem are constructed.
Reviewer: T.Faulkner

35R30Inverse problems for PDE
35J10Schrödinger operator
35Q99PDE of mathematical physics and other areas
35P25Scattering theory (PDE)
35A30Geometric theory for PDE, characteristics, transformations
Full Text: DOI
[1] Novikov, S. P.; Manakov, S. V.; Pitaevsky, L. P.; Zakharov, V. E.: Theory of soliton. The inverse scattering method. (1984)
[2] Manakov, S. V.: Uspehi mat. Nauk.. 31, 245 (1976)
[3] Dubrovin, B. A.; Krichever, I. M.; Novikov, S. P.: Sov. math. Dokl.. 17, 947-951 (1976)
[4] Krichever, I. M.: Uspehi mat. Nauk. 32, 198 (1977)
[5] Cherednik, I. V.: Dan sssr. 252, 1104 (1980)
[6] Veselov, A. P.; Novikov, S. P.: Dan sssr. 279, 20-24 (1984)
[7] Veselov, A. P.; Novikov, S. P.: Dan sssr. 279, 784-788 (1984)
[8] Dubrovin, V. A.: Uspehi mat. Nauk. 36, 11 (1981)
[9] Krichever, I. M.; Novikov, S. P.: Uspehi mat. Nauk. 35, 47 (1980)
[10] Novikov, S. P.: Sov. math. Dokl.. 23 (1981)
[11] Krichever, I. M.: Dan sssr. 282 (1985)
[12] Grinevitch, P. G.; Novikov, R. G.: Funkt. analys i ego prilog.. 4 (1985)