Kamińska, A. Some convexity properties of Musielak-Orlicz spaces of Bochner type. (English) Zbl 0609.46015 Rend. Circ. Mat. Palermo, II. Ser. Suppl. 10, 63-73 (1985). It is shown here that if a Banach space X and Musielak-Orlicz space \(L_{\phi}\) are both locally uniformly rotund or uniformly rotund in every direction then the space \(L_{\phi}(X)\) of Bochner type has the same properties. Moreover criteria for these properties have been given for a subspace of finite elements \(E_{\phi}(X)\). Cited in 13 Documents MSC: 46E40 Spaces of vector- and operator-valued functions 46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.) 46B25 Classical Banach spaces in the general theory Keywords:Musielak-Orlicz spaces of Bochner type; locally uniformly rotund; uniformly rotund in every direction PDF BibTeX XML Cite \textit{A. Kamińska}, Suppl. Rend. Circ. Mat. Palermo (2) 10, 63--73 (1985; Zbl 0609.46015) OpenURL