×

zbMATH — the first resource for mathematics

Optimal design and relaxation of variational problems. I. (English) Zbl 0609.49008
This three-part paper provides a detailed account of interrelation which exists between structural design optimization, relaxation of variational problems, and homogenization. The theory of optimal design is ultimately connected with two other trends since many optimum problems, i.e. those of distribution of materials, are initially ill-posed. Physically speaking, the way out lies in a suitable extension of the initial variational problem, this extension allowing all possible mixtures of given constituents as admissible materials, too. Mathematically, relaxation involves a special pointwise transformation of the integrand of a lower semi-continuous functional to the form which is satisfactory from the viewpoint of existence of a minimizer. A suitable technique, the s.c. quasiconvexification procedure, is developed to obtain that kind of transformation, and this one yields the extension which does not influence the lower bound of a minimized functional; moreover, it makes this bound attainable.
Reviewer: K.Lurie

MSC:
49J45 Methods involving semicontinuity and convergence; relaxation
74E30 Composite and mixture properties
74P99 Optimization problems in solid mechanics
49J20 Existence theories for optimal control problems involving partial differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Acerbi, Arch. Rational Mech. Anal. 86 pp 125– (1984)
[2] , and , Optimal control theory and structural design, in Optimum Structure Design, Vol. 2, , , and , Eds., J. Wiley and Sons, New York, 1983.
[3] Ball, Arch. Rational Mech. Anal. 63 pp 337– (1977)
[4] Ball, Pac. J. Math. 116 pp 7– (1985) · Zbl 0553.49012 · doi:10.2140/pjm.1985.116.7
[5] Ball, J. Funct. Anal. 41 pp 135– (1981)
[6] Ball, J. Funct. Anal. 58 pp 225– (1984)
[7] Banichuk, Mech. of Solids (MTT) 17 pp 110– (1982)
[8] Problems and Methods of Optimal Structural Design, Plenum Press, New York and London, 1983. · doi:10.1007/978-1-4613-3676-1
[9] Berliocchi, C.R. Acad. Sci. Paris 274A pp 1623– (1972)
[10] Bombieri, Inventiones Math. 7 pp 243– (1969)
[11] Buttazzo, Nonlinear Anal., Theory, Methods, and Appl. 9 pp 515– (1985)
[12] Cheng, Int. J. Solids Structures 17 pp 305– (1981)
[13] Cheng, Int. J. Solids Structures 18 pp 153– (1982)
[14] Chipot, Proc. Roy. Soc. Edinburgh, Ser A.
[15] and , Optimization of Distributed Parameter Structures, Sijthoff and Noordhoff, Amsterdam, 1981.
[16] Dacorogna, Arch. Rational Mech. Anal. 77 pp 359– (1981)
[17] Dacorogna, Indiana Univ. Math. J. 31 pp 531– (1982)
[18] Dacorogna, J. Funct. Anal. 46 pp 102– (1982)
[19] Weak Continuity and Weak Lower Semicontinuity of Nonlinear Functionals, Lecture Notes in Math. 922, Springer-Verlag, New York, 1982. · Zbl 0484.46041 · doi:10.1007/BFb0096144
[20] Regularization of nonelliptic variational problems, in Systems of Nonlinear Partial Differential Equations, ed., D. Reidel, Dordrecht, 1983, pp. 385–400. · doi:10.1007/978-94-009-7189-9_24
[21] Dacorogna, J. Math. Pures Appl. 1
[22] Ekeland, J. Funct. Anal. 9 pp 1– (1972)
[23] and , Convex Analysis and Variational Problems, North-Holland, Amsterdam, 1976.
[24] Geometric Measure Theory, Springer-Verlag, New York and Berlin, 1969.
[25] Fleming, Arch. Math. 11 pp 218– (1960)
[26] Remarks on the relaxation of integrals of the calculus of variations, in Systems of Nonlinear Partial Differential Equations, ed., D. Reidel, Dordrecht, 1983, pp. 401–408. · doi:10.1007/978-94-009-7189-9_25
[27] Minimal Surfaces and Functions of Bounded Variation, Birkhauser, Boston, 1984. · Zbl 0545.49018 · doi:10.1007/978-1-4684-9486-0
[28] Hashin, J. Appl. Mech. 50 pp 481– (1983)
[29] Hashin, J. Appl. Phys. 33 pp 3125– (1962)
[30] Ioffe, Trudy Moskovskovo Matematiceskovo Obschestra 18 pp 188– (1968)
[31] and , Optimal design for torsional rigidity, in Hybrid and Mixed Finite Element Methods, , and , eds., J. Wiley and Sons, New York, 1983, pp. 281–288.
[32] and , Structural design optimization, homogenization, and relaxation of variational problems, in Macroscopic Properties of Disordered Media, , and , eds., Lecture Notes in Physics No. 154, Springer-Verlag, 1982.
[33] Kohn, Bull. A.M.S. 9 pp 211– (1983)
[34] Lurie, J. Appl. Math. Mech. (PMM) 34 pp 255– (1970)
[35] Optimal Control in Problems of Mathematical Physics, Nauka, Moscow, USSR, 1975. (In Russian.)
[36] Lurie, J. Opt. Th. Appl. 42 pp 305– (1984)
[37] Lurie, J. Opt. Th. Appl. 42 pp 283– (1984)
[38] Lurie, Opt. Control Appl. Math. 4 pp 387– (1983)
[39] Lurie, Proc. Roy. Soc. Edinburgh 99A pp 71– (1984) · Zbl 0564.73079 · doi:10.1017/S030821050002597X
[40] Lurie, I, II, J. Opt. Th. Appl. 37 pp 499– (1982)
[41] Lurie, J. Opt. Th. Appl. 42 pp 247– (1984)
[42] Marcellini, Nonlinear Anal. 4 pp 241– (1980)
[43] Marcellini, J. Math. Pures et Appl. 62 pp 1– (1983)
[44] Marcellini, Appl. Math. Optim. 11 pp 183– (1984)
[45] Marcellini, Manuscripta Math. 51 pp 1– (1985)
[46] McShane, Duke Math. J. 6 pp 513– (1940)
[47] Michell, Phil. Mag. S6 8 pp 589– (1904) · doi:10.1080/14786440409463229
[48] Milton, J. Appl. Phys. 52 pp 5286– (1981)
[49] Miranda, Ann. Sc. Norm. Sup. Pisa 19 pp 626– (1965)
[50] Morrey, Pacific J. Math. 2 pp 25– (1952) · Zbl 0046.10803 · doi:10.2140/pjm.1952.2.25
[51] Meyers, Trans. Amer. Math. Soc. 119 pp 125– (1965)
[52] and , Calcul des variations et homogénéisation, in Les Méthodes de l’Homogénéisation: Théorie et Applications en Physique, Coll. de la Dir. des Etudes et Recherches de Elec. de France, Eyrolles, Paris, 1985, pp. 319–370.
[53] Olhoff, J. Appl. Mech. 50 (1983)
[54] Overton, Math. Prog. 27 pp 34– (1983)
[55] Optimal Shape Design for Elliptic Systems, Springer-Verlag, New York, 1984. · doi:10.1007/978-3-642-87722-3
[56] Raitum, Soviet Math. Dokl. 19 pp 1342– (1978)
[57] Raitum, Soviet Math Dokl. 20 pp 129– (1979)
[58] Rozvany, J. Struct. Mech. 10 pp 1– (1982) · doi:10.1080/03601218208907399
[59] Schulgasser, J. Phys. C10 pp 407– (1977)
[60] Serre, 1, C.R. Acad. Sci., Paris 293 pp 23– (1981)
[61] Simon, Indiana Univ. Math. J. 28 pp 587– (1979)
[62] and , Optimal design of cylinders in shear, in The Mathematics of Finite Elements and Applications, ed., Academic Press, New York, 1982.
[63] Problèmes de controle des coefficients dans les equations aux dérivées partielles, in Control Theory, Numerical Methods, and Computer System Modelling, and , eds., Lecture Notes in Economics and Mathematical Systems 107, Springer-Verlag, New York, 1975, pp. 420–426. · doi:10.1007/978-3-642-46317-4_30
[64] Estimation de coefficients homogénéisés, in Computing Methods in Applied Sciences and Engineering 1977, I, and , eds., Lecture Notes in Mathematics 704, Springer-Verlag, New York, 1978, pp. 364–373.
[65] Compensated compactness and applications to partial differential equations, in Nonlinear Analysis and Mechanics: Heriot-Watt Symposium IV, ed., Pitman Press, London, 1979.
[66] Estimations fines des coefficients homogénéisés, in ed., Ennio DeGiorgi Colloquium, Pitman Press, London, 1985.
[67] Uhlig, Lin. Alg. and Its Appl. 25 pp 219– (1979)
[68] Variational and related methods for the overall properties of composites, in C.-S. Yih, ed., Advances in Applied Mech. 21, 1981, pp. 2–78.
[69] Young, I, II, Ann. Math. 43 pp 84– (1942)
[70] Zhikov, Russian Math. Surveys 34 pp 69– (1979)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.