zbMATH — the first resource for mathematics

A decomposition of continuity. (English) Zbl 0609.54012
This paper introduces the following notions. A subset B of a topological space (X,\({\mathcal T})\) is defined to be an \({\mathcal A}\)-set if \(B=U-W\) where U is open and W is regular open. A function f: (X,\({\mathcal T})\to (Y,{\mathcal U})\) is called \({\mathcal A}\)-continuous if \(f^{-1}(V)\) is an \({\mathcal A}\)- set in X for each open set V in Y. O. Njåstad [Pac. J. Math. 15, 961-970 (1965; Zbl 0137.419)] defined a subset S of (X,\({\mathcal T})\) to be an \(\alpha\)-set if \(S\subset int(cl(int S))\). A. S. Mashhour et al [Acta Math. Hung. 41, 213-218 (1983; Zbl 0534.54006)] defined a function f: (X,\({\mathcal T})\to (Y,{\mathcal U})\) to be \(\alpha\)-continuous if \(f^{-1}(V)\) is an \(\alpha\)-set in X for each open set V in Y. The main result of this paper is that f is continuous if and only if it is \(\alpha\)-continuous and \({\mathcal A}\)-continuous.
Reviewer: I.L.Reilly

54C05 Continuous maps
Full Text: DOI
[1] J. Dugundji,Topology, Allyn and Bacon (Boston, 1972).
[2] S. Fomin, Extensions of topological spaces,Ann. Math.,44 (1943), 471–480. · Zbl 0061.39601
[3] Z. Frolík, Remarks concerning the invariance of Baire spaces under mappings,Czech. Math. J.,11 (86) (1961), 381–385. · Zbl 0104.17204
[4] R. V. Fuller, Relations among continuous and various non-continuous functions,Pacific J. Math.,25 (1968), 495–509. · Zbl 0165.25304
[5] K. R. Gentry and H. B. Hoyle III, Somewhat continuous functions,Czech. Math. J. 21 (96) (1971), 5–12. · Zbl 0222.54010
[6] L. L. Herrington, Some properties preserved by the almost continuous functions,Boll. Un. Math. Ital.,10 (1974), 556–568. · Zbl 0304.54008
[7] T. Husain, Almost continuous mappings,Prace Mat.,10 (1966), 1–7. · Zbl 0138.17601
[8] T. Husain,Topology and Maps, Plenum Press (New York, 1977). · Zbl 0401.54001
[9] S. Kempsty, Sur les fonctions quasicontinues,Fund. Math.,19 (1932), 184–197. · JFM 58.0246.01
[10] N. Levine, A decomposition of continuity in topological spaces,Amer. Math. Monthly,68 (1961), 44–46. · Zbl 0100.18601
[11] N. Levine, Semiopen sets and semicontinuity in topological spaces,Amer. Math. Monthly,70 (1963), 36–41. · Zbl 0113.16304
[12] P. E. Long and E. E. McGhee, Jr., Properties of almost continuous functions,Proc. Amer. Math. Soc.,24 (1970), 175–180.
[13] P. E. Long and D. A. Carnahan, Comparing almost-continuous functions,Proc. Amer. Math. Soc.,38 (1973), 413–418. · Zbl 0261.54007
[14] P. E. Long and L. L. Herrington, Properties of almost continuous functions,Boll. Un. Math. Ital.,10 (1974), 336–342. · Zbl 0317.54008
[15] A. S. Mashhour, I. A. Hasanein and S. N. El-Deeb, {\(\alpha\)}-continuous and {\(\alpha\)}-open mappings,Acta Math. Hungar.,41 (1983), 213–218. · Zbl 0534.54006
[16] O. Njåstad, On some classes of nearly open sets,Pacific J. Math.,15 (1965), 961–970. · Zbl 0137.41903
[17] T. Noiri, Semi-continuity and weak-continuity,Czech. Math. J.,31 (106) (1981), 314–321. · Zbl 0483.54006
[18] D. A. Rose, On Levine’s decomposition of continuity,Canad. Math. Bull. 21 (1978), 477–481. · Zbl 0394.54004
[19] M. K. Singal and A. R. Singal, Almost continuous mapping,Yokohama Math. J.,2 (1968), 63–73. · Zbl 0191.20802
[20] J. Stallings, Fixed-point theorems for connectivity maps,Fund. Math.,47 (1959), 249–263. · Zbl 0114.39102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.