Wellner, Jon A. A heavy censoring limit theorem for the product limit estimator. (English) Zbl 0609.62061 Ann. Stat. 13, 150-162 (1985). A key identity for the product-limit estimator due to O. O. Aalen and S. Johansen [Scand. J. Stat., Theory Appl. 5, 141-150 (1978; Zbl 0383.62058)] and R. D. Gill [Censoring and stochastic integrals. Math. Centre Tracts 124 (1980; Zbl 0456.62003)] is shown to be a consequence of the exponential formula of C. Doléans-Dade [Z. Wahrscheinlichkeitstheor. Verw. Geb. 16, 181-194 (1970; Zbl 0194.491)]. The basic counting processes in the censored data problem are shown to converge jointly to Poisson processes under ”heavy-censoring”: \(G_ n\to_ d\delta_ 0\), but \(n(1-G_ n)\to \alpha\) where \(G_ n\) is the censoring distribution. The Poisson limit theorem for counting processes implies Poisson type limit theorems under heavy censoring for the cumulative hazard function estimator and product limit estimator. The latter, in combination with the key identity of Aalen-Johansen and Gill and martingale properties of the limit processes, yields a new approximate variance formula for the product limit estimator which is compared numerically with recent finite sample calculations for the case of proportional hazard censoring due to Y. Y. Chen, M. Hollander and N. A. Langberg [J. Am. Stat. Assoc. 77, 141-144 (1982; Zbl 0504.62033)]. Cited in 1 ReviewCited in 17 Documents MSC: 62G05 Nonparametric estimation 60F05 Central limit and other weak theorems 62G30 Order statistics; empirical distribution functions 60G44 Martingales with continuous parameter Keywords:Kaplan-Meier estimator; product-limit estimator; exponential formula; counting processes; censored data problem; Poisson processes; heavy- censoring; Poisson limit theorem; cumulative hazard function estimator; martingale; new approximate variance formula; proportional hazard censoring Citations:Zbl 0383.62058; Zbl 0456.62003; Zbl 0194.491; Zbl 0504.62033 × Cite Format Result Cite Review PDF Full Text: DOI