×

zbMATH — the first resource for mathematics

Theory and applications of cellular automata (including selected papers 1983-1986). (English) Zbl 0609.68043
Advanced Series on Complex Systems, Vol. 1. Singapore: World Scientific. Distr. by John Wiley & Sons. IX, 560 p. (1986).
”This book includes recent papers that describe some of the phenomenology, theory, and applications of cellular automata. These papers establish some of the basic results and directions for cellular automaton approaches to complex systems.” (From the preface). Most of them are reprints from several journals.
Contents: S. Wolfram, ”Statistical mechanics of cellular automata” (pp. 7-50); O. Martin, A. Odlyzko and S. Wolfram, ”Algebraic properties of cellular automata” (pp. 51-90); S. Wolfram, ”Universality and complexity in cellular automata” (pp. 91- 125); N. Packard and S. Wolfram, ”Two-dimensional cellular automata” (pp. 126-171); S. Wolfram, ”Twenty problems in the theory of cellular automata” (pp. 172-185); S. Wolfram, ”Computation theory of cellular automata” (pp. 189-231); N. Margolus, ”Physics- like models of computation” (pp. 232-246); S. Wolfram, ”Random sequence generation by cellular automata” (pp. 247-293); S. Wolfram, ”Undecidability and intractability in theoretical physics” (pp. 294-297); S. Wolfram, ”Origins of randomness in physical systems” (pp. 298-301); N. Packard, ”Lattice models for solidification and aggregation” (pp. 305-310); B. Madore and W. Freedman, ”Computer simulations of the Belousov-Zhabotinsky reaction” (pp.311-312); A. Winfree, E. Winfree and H. Seifert, ”Organizing centers in a cellular excitable medium” (pp. 313-319); D. Young, ”A local activator-inhibitor model of vertebrate skin patterns” (pp. 320- 327); Y. Oono and M. Kohmoto, ”Discrete model of chemical turbulence” (pp. 328-332); J. Park, K. Steiglitz and W. Thurston, ”Soliton-like behaviour in automata” (pp. 333-342); Y. Pomeau, ”Invariant in cellular automata” (pp 343-346); M. Creutz, ”Deterministic Ising dynamics” (pp. 347-357); U. Frisch, B. Hasslacher and Y. Pomeau, ”Lattice gas automata for the Navier- Stokes equation” (pp. 358-361); J. Salem and S. Wolfram, ”Thermodynamics and hydrodynamics of cellular automata” (pp. 362-366); K. Kaneko, ”Attractors, basin structures and information processing in cellular automata” (pp. 367-399); S. Wolfram, ”Approaches to complexity engineering” (pp. 400-415); W. Kinzel, ”Phase transitions of cellular automata” (pp. 419-434); P. Grassberger, F. Krause and T. von der Twer, ”A new type of kinetic critical phenomenon” (pp. 435-439); K. Kaneko and Y. Akutsu, ”Phase transitions in two-dimensional stochastic cellular automata” (pp. 440-446); E. Domany and W. Kinzel, ”Equivalence of cellular automata to Ising models and directed percolation (pp. 447-450); G. Grinstein, C. Jayaprakash and Y. He, ”Statistical mechanics of probabilistic cellular automata” (pp. 451-454); C. Bennett, and G. Grinstein, ”Role of irreversibility in stabilizing complex and nonergodic behaviour in locally interacting discrete systems” (pp. 455- 458); An annotated bibliography of cellular automata (pp. 459-481); Appendix: Properties of the \(k=2\), \(r=1\) cellular automata (pp. 483-557).

MSC:
68Q80 Cellular automata (computational aspects)
68-06 Proceedings, conferences, collections, etc. pertaining to computer science
00A79 Physics (Use more specific entries from Sections 70-XX through 86-XX when possible)