Order selection in nonlinear time series models with application to the study of cell memory. (English) Zbl 1401.92068

Summary: Cell adhesion experiments are biomechanical experiments studying the binding of a cell to another cell at the level of single molecules. Such a study plays an important role in tumor metastasis in cancer study. Motivated by analyzing a repeated cell adhesion experiment, a new class of nonlinear time series models with an order selection procedure is developed in this paper. Due to the nonlinearity, there are two types of overfitting. Therefore, a double penalized approach is introduced for order selection. To implement this approach, a global optimization algorithm using mixed integer programming is discussed. The procedure is shown to be asymptotically consistent in estimating both the order and parameters of the proposed model. Simulations show that the new order selection approach outperforms standard methods. The finite-sample performance of the estimator is also examined via a simulation study. The application of the proposed methodology to a T-cell experiment provides a better understanding of the kinetics and mechanics of cell adhesion, including quantifying the memory effect on a repeated unbinding force experiment and identifying the order of the memory.


92C37 Cell biology
62P10 Applications of statistics to biology and medical sciences; meta analysis
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
Full Text: DOI arXiv Euclid


[1] Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In Second International Symposium on Information Theory ( Tsahkadsor , 1971) (B. N. Petrov and F. Csaki, eds.) 267-281. Akad. Kiad√≥, Budapest. · Zbl 0283.62006
[2] Burman, P., Chow, E. and Nolan, D. (1994). A cross-validatory method for dependent data. Biometrika 81 351-358. · Zbl 0825.62669
[3] Chan, K. S. (1993). Consistency and limiting distribution of the least squares estimator of a threshold autoregressive model. Ann. Statist. 21 520-533. · Zbl 0786.62089
[4] Chen, J. and Khalili, A. (2008). Order selection in finite mixture models with a nonsmooth penalty. J. Amer. Statist. Assoc. 103 1674-1683. · Zbl 1286.62057
[5] Chen, W., Evans, E. A., McEver, R. P. and Zhu, C. (2008). Monitoring receptor-ligand interactions between surfaces by thermal fluctuations. Biophys. J. 94 694-701.
[6] Craven, P. and Wahba, G. (1979). Smoothing noisy data with spline functions. Estimating the correct degree of smoothing by the method of generalized cross-validation. Numer. Math. 31 377-403. · Zbl 0377.65007
[7] Diggle, P. J., Heagerty, P. J., Liang, K.-Y. and Zeger, S. L. (2002). Analysis of Longitudinal Data , 2nd ed. Oxford Statistical Science Series 25 . Oxford Univ. Press, Oxford. · Zbl 1031.62002
[8] Donoho, D. L. and Johnstone, I. M. (1994). Ideal spatial adaptation by wavelet shrinkage. Biometrika 81 425-455. · Zbl 0815.62019
[9] Fan, J. and Gijbels, I. (1996). Local Polynomial Modelling and Its Applications. Monographs on Statistics and Applied Probability 66 . Chapman and Hall, London. · Zbl 0873.62037
[10] Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. J. Amer. Statist. Assoc. 96 1348-1360. · Zbl 1073.62547
[11] Fan, J. and Yao, Q. (2003). Nonlinear Time Series : Nonparametric and Parametric Methods . Springer, New York. · Zbl 1014.62103
[12] Hall, P. and Heyde, C. C. (1980). Martingale Limit Theory and Its Application . Academic Press, New York. · Zbl 0462.60045
[13] Hansen, B. E. (2000). Sample splitting and threshold estimation. Econometrica 68 575-603. · Zbl 1056.62528
[14] Huang, J., Zarnitsyna, V. I., Liu, B., Edwards, L. J., Chien, Y. H., Jiang, N., Evavold, B. D. and Zhu, C. (2010). The kinetics of two-dimensional TCR and pMHC interactions determine T-cell responsiveness. Nature 464 932-936.
[15] Hung, Y. (2011). Maximum likelihood estimation of nonlinear time series models. Technical report, Dept. Statistics and Biostatistics, Rutgers Univ., Piscataway, NJ.
[16] Hung, Y., Zarnitsyna, V., Zhang, Y., Zhu, C. and Wu, C. F. J. (2008). Binary time series modeling with application to adhesion frequency experiments. J. Amer. Statist. Assoc. 103 1248-1259. · Zbl 1205.62131
[17] Hyman, J. M. and LaForce, T. (2003). Modeling the spread of influenza among cities. In Biomathematical Modeling Applications for Homeland Security (T. Banks and C. Castillo-Chavez, eds.). SIAM, Philadelphia, PA.
[18] Jiang, J. (1996). REML estimation: Asymptotic behavior and related topics. Ann. Statist. 24 255-286. · Zbl 0853.62022
[19] Liu, Y. and Wu, Y. (2007). Variable selection via a combination of the \(L_{0}\) and \(L_{1}\) penalties. J. Comput. Graph. Statist. 16 782-798.
[20] Marshall, B. T., Long, M., Piper, J. W., Yago, T., McEver, R. P. and Zhu, C. (2003). Direct observation of catch bonds involving cell-adhesion molecules. Nature 423 190-193. · Zbl 0761.68011
[21] Marshall, B. T., Sarangapani, K. K., Lou, J., McEver, R. P. and Zhu, C. (2005). Force history dependence of receptor-ligand dissociation. Biophys. J. 88 1458-1466.
[22] McCulloch, C. E. and Searle, S. R. (2008). Generalized , Linear , and Mixed Models , 2nd ed. Wiley, New York. · Zbl 1165.62050
[23] Nemhauser, G. and Wolsey, L. (1999). Integer and Combinatorial Optimization . Wiley, New York. · Zbl 0944.90001
[24] Nie, L. (2006). Strong consistency of the maximum likelihood estimator in generalized linear and nonlinear mixed-effects models. Metrika 63 123-143. · Zbl 1095.62028
[25] Pollard, D. (1984). Convergence of Stochastic Processes . Springer, New York. · Zbl 0544.60045
[26] Racine, J. (2000). Consistent cross-validatory model-selection for dependent data: hv -block cross-validation. J. Econometrics 99 39-61. · Zbl 1011.62118
[27] Samia, N. I. and Chan, K.-S. (2011). Maximum likelihood estimation of a generalized threshold stochastic regression model. Biometrika 98 433-448. · Zbl 1215.62096
[28] Samia, N. I., Chan, K.-S. and Stenseth, N. C. (2007). A generalized threshold mixed model for analyzing nonnormal nonlinear time series, with application to plague in Kazakhstan. Biometrika 94 101-118. · Zbl 1142.62397
[29] Schwarz, G. (1978). Estimating the dimension of a model. Ann. Statist. 6 461-464. · Zbl 0379.62005
[30] Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions (with discussion). J. Roy. Statist. Soc. Ser. B 36 111-147. · Zbl 0308.62063
[31] Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc. Ser. B 58 267-288. · Zbl 0850.62538
[32] Tibshirani, R. J. (1997). The lasso method for variable selection in the Cox model. Stat. Med. 16 385-395.
[33] Tong, H. (1980). Threshold autoregression, limit cycles and cyclical data. J. Roy. Statist. Soc. Ser. B 42 245-292. · Zbl 0473.62081
[34] Tong, H. (1983). Threshold Models in Nonlinear Time Series Analysis. Lecture Notes in Statistics 21 . Springer, New York. · Zbl 0527.62083
[35] Tong, H. (1990). Nonlinear Time Series : A Dynamical System Approach. Oxford Statistical Science Series 6 . Oxford Univ. Press, New York. · Zbl 0716.62085
[36] Tong, H. (2007). Birth of the threshold time series model. Statist. Sinica 17 8-14.
[37] Tong, H. and Lim, K. S. (1980). Threshold autoregression, limit cycles and cyclical data (with discussion). J. Roy. Statist. Soc. Ser. B 42 245-292. · Zbl 0473.62081
[38] Tsay, R. S. (1989). Testing and modeling threshold autoregressive processes. J. Amer. Statist. Assoc. 84 231-240. · Zbl 0683.62050
[39] Zarnitsyna, V. I., Huang, J., Zhang, F., Chien, Y. H., Leckband, D. and Zhu, C. (2007). Memory in receptor-ligand mediated cell adhesion. Proc. Natl. Acad. Sci. USA 104 18037-18042.
[40] Zou, H. (2006). The adaptive lasso and its oracle properties. J. Amer. Statist. Assoc. 101 1418-1429. · Zbl 1171.62326
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.