×

zbMATH — the first resource for mathematics

Computer-generated neighbor designs. (English) Zbl 1253.05037
Summary: Neighbor designs are useful to remove the neighbor effects. In this article, an algorithm is developed and is coded in Visual \(C++\) to generate the initial block for possible first, second, \(\ldots\) , and all order neighbor designs. To get the required design, a block \((0, 1, 2,\ldots , k-1)\) is then augmented with \((v-1)\) blocks obtained by developing the initial block cyclically mod \((v-1)\).
MSC:
05B05 Combinatorial aspects of block designs
62K10 Statistical block designs
Software:
Visual C++
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1080/15598608.2008.10411894 · Zbl 1211.62132 · doi:10.1080/15598608.2008.10411894
[2] Ahmed R., Pakistan Journal of Statistics 25 (2) pp 121– (2009)
[3] DOI: 10.1016/j.jspi.2010.07.018 · Zbl 1209.62175 · doi:10.1016/j.jspi.2010.07.018
[4] Ahmed , R. , Akhtar , M. , Yasmin , F. ( 2011 ). Brief review of one dimensional neighbor balanced designs since 1967.Pakistan Journal of Commerce and Social Sciences5(1): 100–116 .
[5] DOI: 10.1007/s11425-007-0035-2 · Zbl 1121.62070 · doi:10.1007/s11425-007-0035-2
[6] DOI: 10.1080/03610910802656013 · Zbl 1169.05009 · doi:10.1080/03610910802656013
[7] Akhtar M., Pakistan Journal of Statistics 26 (2) pp 397– (2010)
[8] DOI: 10.2307/2532269 · doi:10.2307/2532269
[9] DOI: 10.1214/aos/1176342476 · Zbl 0262.62038 · doi:10.1214/aos/1176342476
[10] DOI: 10.1007/s11425-009-0063-1 · Zbl 1177.05019 · doi:10.1007/s11425-009-0063-1
[11] Jacroux M., Sankhya B 60 (3) pp 488– (1998)
[12] DOI: 10.1214/aoms/1177693256 · Zbl 0237.05006 · doi:10.1214/aoms/1177693256
[13] DOI: 10.2307/2528428 · doi:10.2307/2528428
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.