×

Computing regularities in strings: a survey. (English) Zbl 1253.68277

Summary: The aim of this survey is to provide insight into the sequential algorithms that have been proposed to compute exact “regularities” in strings; that is, covers (or quasiperiods), seeds, repetitions, runs (or maximal periodicities), and repeats. After outlining and evaluating the algorithms that have been proposed for their computation, I suggest possibly productive future directions of research.

MSC:

68R15 Combinatorics on words

Software:

libdivsufsort
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Abouelhoda, Mohamed I.; Kurtz, Stefan; Ohlebusch, Enno, Replacing suffix trees with enhanced suffix arrays, J. Discrete Algorithms, 2, 53-86, (2004) · Zbl 1115.92303
[2] Adjeroh, Don; Bell, Tim; Mukherjee, Amar, The Burrows Wheeler transform: data compression, suffix arrays, and pattern matching, (2008), Springer-Verlag, p. 351 · Zbl 1278.68009
[3] Aho, Alfred V.; Hopcroft, John E.; Ullman, Jeffrey D., The design & analysis of computer algorithms, (1974), Addison-Wesley · Zbl 0326.68005
[4] Anisa Al-Hafeedh, Maxime Crochemore, Lucian Ilie, Evguenia Kopylova, W.F. Smyth, German Tischler, Munina Yusufu, A comparison of index-based Lempel-Ziv LZ77 factorization algorithms, ACM Comput. Surv. (2012) (in press). · Zbl 1293.68312
[5] Pavlos Antoniou, Maxime Crochemore, Costas S. Iliopoulos, Pierre Peterlongo, Application of suffix trees for the acquisition of common motifs with gaps in a set of strings, in: Proc. First Internat. Conf. on Language & Automata Theory & Applications, 2007, pp. 57-66.
[6] Apostolico, Alberto, The myriad virtues of suffix trees, (Combinatorial Algorithms on Words, NATO ASI Series F12, (1985), Springer-Verlag), 85-96 · Zbl 0572.68067
[7] Alberto Apostolico, Dany Breslauer, Of periods, quasiperiods, repetitions and covers, Tech. Report CSD-TR 97-017, Department of Computer Science, Purdue University, 1997, p. 13.
[8] Alberto Apostolico, Andrzej Ehrenfeucht, Efficient detection of quasiperiodicities in strings, Tech. Report No. 49, Computer Science Dept., Purdue University, 1990. · Zbl 0804.68109
[9] Apostolico, Alberto; Ehrenfeucht, Andrzej, Efficient detection of quasiperiodicities in strings, Theoret. Comput. Sci., 119, 247-265, (1993) · Zbl 0804.68109
[10] Apostolico, Alberto; Farach, Martin; Iliopoulos, Costas S., Optimal superprimitivity testing for strings, Inform. Process. Lett., 39, 17-20, (1991) · Zbl 0734.68071
[11] Apostolico, Alberto; Preparata, Franco P., Optimal off-line detection of repetitions in a string, Theoret. Comput. Sci., 22, 297-315, (1983) · Zbl 0497.68052
[12] Bakalis, A.; Iliopoulos, Costas S.; Sioutas, S.; Theodoridis, E.; Tsakalidis, A.; Tsichlas, K., Locating maximal multirepeats in multiple strings under various constraints, Comput. J., 50, 2, 178-185, (2007)
[13] Berstel, Jean; Boasson, Luc, Partial words and a theorem of fine and Wilf, Theoret. Comput. Sci., 218, 135-141, (1999) · Zbl 0916.68120
[14] Blanchet-Sadri, Francine, Algorithmic combinatorics on partial words, (2007), Chapman & Hall, CRC, p. 385 · Zbl 1180.68205
[15] Breslauer, Dany, An on-line string superprimitivity test, Inform. Process. Lett., 44, 345-347, (1992) · Zbl 0795.68079
[16] Brodal, Gerth Stolting; Lyngso, Rune B.; Pedersen, Christian N. S.; Stoye, Jens, Finding maximal pairs with bounded gap, J. Discrete Algorithms, 1, 77-103, (2000)
[17] Brodal, Gerth Stolting; Pedersen, Christian N. S., Finding maximal quasiperiodicities in strings, (Proc. 11th Annual Symp. Combinatorial Pattern Matching, Lecture Notes in Computer Science, LNCS, vol. 1848, (2000), Springer-Verlag), 397-411 · Zbl 0964.68116
[18] Michael Burrows, David J. Wheeler, A block-sorting lossless data compression algorithm, Tech. Report 124, Digital Equipment Corporation, 1994.
[19] Chen, Gang; Puglisi, Simon J.; Smyth, W. F., Fast & practical algorithms for computing all the runs in a string, (Ma, Bin; Zhang, Kaizhong, Proc. 18th Annual Symp. Combinatorial Pattern Matching, Lecture Notes in Computer Science, LNCS, vol. 4580, (2007), Springer-Verlag), 307-315 · Zbl 1138.68658
[20] Chen, Gang; Puglisi, Simon J.; Smyth, W. F., Lempel – ziv factorization using less time & space, Math. Comput. Sci., 1-4, 605-623, (2008), Joseph Chan, Maxime Crochemore (Eds.) · Zbl 1181.68315
[21] Christou, Michalis; Crochemore, Maxime; Guth, Ondrej; Iliopoulos, Costas S.; Pissis, Solon P., On the right-seed array of a string, (Proc. 17th Annual International Computing & Combinatorics Conference, Lecture Notes in Computer Science, LNCS, vol. 6842, (2011), Springer-Verlag), 492-502 · Zbl 1353.68313
[22] Christou, Michalis; Crochemore, Maxime; Iliopoulos, Costas S.; Kubica, Marcin; Pissis, Solon P.; Radoszewski, Jakub; Rytter, Wojciech; Szreder, Bartosz; Walen, Tomasz, Efficient seeds computation revisited, (Giancarlo, Raffele; Manzini, Giovanni, Proc. 22nd Annual Symp. Combinatorial Pattern Matching, Lecture Notes in Computer Science, LNCS, vol. 6661, (2011), Springer-Verlag), 350-363 · Zbl 1339.68328
[23] Cole, Richard; Iliopoulos, Costas S.; Mohamed, Manal; Smyth, W. F.; Yang, Lu, The complexity of the minimum \(k\)-cover problem, J. Autom. Lang. Comb., 10, 5-6, 641-653, (2005) · Zbl 1136.68618
[24] Crochemore, Maxime, An optimal algorithm for computing all the repetitions in a word, Inform. Process. Lett., 12, 5, 244-248, (1981) · Zbl 0467.68075
[25] Crochemore, Maxime; Ilie, Lucian, Computing longest previous factor in linear time and applications, Inform. Process. Lett., 106, 2, 75-80, (2008) · Zbl 1186.68591
[26] Crochemore, Maxime; Ilie, Lucian, Maximal repetitions in strings, J. Comput. System Sci., 796-807, (2008) · Zbl 1149.68066
[27] Crochemore, Maxime; Ilie, Lucian; Iliopoulos, Costas S.; Kubica, Marcin; Rytter, Wojciech; Waleń, Tomasz, LPF computation revisited, (Fiala, Jiri; Kratochvil, Jan; Miller, Mirka, Proc. 20th Internat. Workshop on Combinatorial Algs., Lecture Notes in Computer Science, LNCS, vol. 5874, (2009), Springer-Verlag), 158-169 · Zbl 1267.68170
[28] Maxime Crochemore, Lucian Ilie, W.F. Smyth, A simple algorithm for computing the Lempel-Ziv factorization, in: J.A. Storer & M.W. Marcellin (Eds.), Proc. 18th Data Compression Conference, DCC’08, 2008, pp. 482-488.
[29] Crochemore, Maxime; Ilie, Lucian; Tinta, Liviu, Towards a solution to the “runs” conjecture, (Ferragina, P.; Landau, G., Proc. 19th Annual Symp. Combinatorial Pattern Matching, Lecture Notes in Computer Science, LNCS, vol. 5029, (2008), Springer-Verlag), 290-302 · Zbl 1143.68510
[30] Crochemore, Maxime; Rytter, Wojciech, Squares, cubes, and time – space efficient strings searching, Algorithmica, 13, 405-425, (1995) · Zbl 0849.68044
[31] Cummings, L. J.; Smyth, W. F., Weak repetitions in strings, J. Combin. Math. Combin. Comput., 24, 33-48, (1997) · Zbl 0882.68111
[32] Fan, Kangmin; Puglisi, Simon J.; Smyth, W. F.; Turpin, Andrew, A new periodicity lemma, SIAM J. Discrete Math., 20, 3, 656-668, (2006) · Zbl 1124.68089
[33] Farach, Martin, Optimal suffix tree construction with large alphabets, (Proc. 38th IEEE Symp. Found. Computer Science, (1997), IEEE Computer Society), 137-143
[34] Gabriele Fici, Thierry Lecroq, Arnaud Lefebvre, Élise Prieur-Gaston, Computing Abelian periods in words, in: Proc. Prague Stringology Conf., 2011, pp. 184-196. · Zbl 1329.68197
[35] Fine, N. J.; Wilf, H. S., Uniqueness theorems for periodic functions, Proc. Amer. Math. Soc., 16, 109-114, (1965) · Zbl 0131.30203
[36] Frantisek Franek, Robert C.G. Fuller, Jamie Simpson, W.F. Smyth, More results on overlapping squares, J. Discrete Algorithms (2012) (in press). · Zbl 1281.68169
[37] Franek, Frantisek; Holub, Jan; Smyth, W. F.; Xiao, Xiangdong, Computing quasi suffix arrays, J. Autom. Lang. Comb., 8, 4, 593-606, (2003) · Zbl 1088.68678
[38] Frantisek Franek, Mei Jiang, Chia-Chun Weng, An improved version of the runs algorithm based on Crochemore’s partitioning algorithm, in: Proc. Prague Stringology Conf., Department of Theoretical Computer Science, Czech Technical University, 2011, pp. 98-105.
[39] Franek, Frantisek; Jiang, Mei; Weng, Chia-Chun
[40] Frantisek Franek, R.J. Simpson, W.F. Smyth, The maximum number of runs in a string, in: Mirka Miller & Kunsoo Park (Eds.), Proc. 14th Australasian Workshop on Combinatorial Algs., 2003, pp. 26-35.
[41] Franek, Frantisek; Smyth, W. F.; Tang, Yudong, Computing all repeats using suffix arrays, J. Autom. Lang. Comb., 8, 4, 579-591, (2003) · Zbl 1088.68679
[42] Franek, Frantisek; Smyth, W. F.; Xiao, Xiangdong, A note on crochemore’s repetitions algorithm—a fast space-efficient approach, Nordic J. Comput., 10, 1, 21-28, (2003) · Zbl 1065.68111
[43] Fredkin, Edward, Trie memory, Commun. ACM, 3, 9, 490-499, (1960)
[44] Giraud, Mathieu, Not so many runs in strings, (Martín-Vide, Carlos; Otto, Friedrich; Fernau, Henning, Proc. 2nd Internat. Conf. on Language & Automata Theory & Applications, Lecture Notes in Computer Science, LNCS, vol. 5196, (2008), Springer-Verlag), 232-239 · Zbl 1156.68511
[45] Groult, R.; Richomme, G., Optimality of some algorithms to detect quasiperiodicities, Theoret. Comput. Sci., 411, 34-36, 34-36, (2010) · Zbl 1196.68178
[46] Guo, Qing; Zhang, Hui; Iliopoulos, Costas S., Computing the \(\lambda\)-seeds of a string, (Proc. 2nd International Conference on Algorithmic Aspects in Information & Management, Lecture Notes in Computer Science, LNCS, vol. 4041, (2006), Springer-Verlag), 303-313 · Zbl 1137.68509
[47] Guo, Qing; Zhang, Hui; Iliopoulos, Costas S., Computing the \(\lambda\)-covers of a string, Inform. Sci., 177, 19, 3957-3967, (2007) · Zbl 1126.68059
[48] Gusfield, Dan, Algorithms on strings, trees & sequences, (1997), Cambridge University Press, p. 534 · Zbl 0934.68103
[49] Hopcroft, John E., An \(n \log n\) algorithm for minimizing states in a finite automaton, (Kohavi, Z.; Paz, A., Theory of Machines and Computations, (1971), Academic Press)
[50] Ilie, Lucian; Smyth, W. F., Minimum unique substrings and maximum repeats, Fund. Inform., 110, 1-4, 183-195, (2011) · Zbl 1252.68360
[51] Iliopoulos, Costas S.; McHugh, James; Peterlongo, Pierre; Pisanti, Nadia; Rytter, Wojciech; Sagot, Marie-France, A first approach to finding common motifs with gaps, Internat. J. Found. Comput. Sci., 16, 6, 1145-1155, (2005) · Zbl 1101.68562
[52] Iliopoulos, Costas S.; Mohamed, Manal; Mouchard, Laurent; Perdikuri, Katerina; Smyth, W. F.; Tsakalidis, Athanasios K., String regularities with don’t cares, Nordic J. Comput., 10, 1, 40-51, (2003) · Zbl 1061.68188
[53] Iliopoulos, Costas S.; Mohamed, Manal; Smyth, W. F., New complexity results for the \(k\)-covers problem, Inform. Sci., 181, 2571-2575, (2011) · Zbl 1216.68130
[54] Iliopoulos, Costas S.; Moore, D. W.G.; Park, Kunsoo, Covering a string, Algorithmica, 16, 288-297, (1996) · Zbl 0858.68067
[55] Iliopoulos, Costas S.; Mouchard, Laurent, Quasiperiodicity: from detection to normal forms, J. Autom. Lang. Comb., 4, 3, 213-228, (1999) · Zbl 0946.68112
[56] Iliopoulos, Costas S.; Mouchard, Laurent; Rahman, M. Sohel, A new approach to pattern matching in degenerate DNA/RNA sequences and distributed pattern matching, Math. Comput. Sci., 3, 4, 433-442, (2010) · Zbl 1160.68684
[57] Costas S. Iliopoulos, W.F. Smyth, On-line algorithms for \(k\)-covering, in: Proc. Ninth Australasian Workshop on Combinatorial Algs., Curtin University of Technology, 1998, pp. 64-73.
[58] Iliopoulos, Costas S.; Smyth, W. F.; Yusufu, Munina, Faster algorithms for computing maximal multirepeats in multiple sequences, Fund. Inform., 97, 3, 311-320, (2009), Special string masters issue, Ryszard Janicki, Simon J. Puglisi & M. Sohel Rahman (Eds.) · Zbl 1189.68180
[59] Kärkkäinen, Juha; Manzini, Giovanni; Puglisi, Simon J., Permuted longest-common-prefix array, (Kucherov, Gregory; Ukkonen, Esko, Proc. 20th Annual Symp. Combinatorial Pattern Matching, Lecture Notes in Computer Science, LNCS, vol. 5577, (2009)), 181-192 · Zbl 1247.68336
[60] Kärkkäinen, Juha; Sanders, Peter, Simple linear work suffix array construction, (Proc. 30th Internat. Colloq. Automata, Languages & Programming, Lecture Notes in Computer Science, LNCS, vol. 2719, (2003), Springer-Verlag), 943-955 · Zbl 1039.68042
[61] Kasai, Toru; Lee, Gunho; Akimura, Hiroki; Arikawa, Setsuo; Park, Kunsoo, Linear-time longest-common-prefix computation in suffix arrays and its applications, (Amir, Amihood; Landau, Gad M., Proc. 12th Annual Symp. Combinatorial Pattern Matching, Lecture Notes in Computer Science, LNCS, vol. 2089, (2001), Springer-Verlag), 181-192 · Zbl 0990.68639
[62] Kim, Dong Kyue; Sim, Jeong Seop; Park, Heejin; Park, Kunsoo, Linear-time construction of suffix arrays, (Baeza-Yates, Ricardo; Chávez, Edgar; Crochemore, Maxime, Proc. 14th Annual Symp. Combinatorial Pattern Matching, Lecture Notes in Computer Science, LNCS, vol. 2676, (2003), Springer-Verlag), 186-199 · Zbl 1279.68068
[63] Knuth, Donald E.; Morris, James H.; Pratt, Vaughan R., Fast pattern matching in strings, SIAM J. Comput., 6, 2, 323-350, (1977) · Zbl 0372.68005
[64] Ko, Pang; Aluru, Srinivas, Space efficient linear time construction of suffix arrays, (Baeza-Yates, R.; Chávez, E.; Crochemore, M., Proc. 14th Annual Symp. Combinatorial Pattern Matching, Lecture Notes in Computer Science, LNCS, vol. 2676, (2003), Springer-Verlag), 200-210 · Zbl 1279.68069
[65] Tomasz Kociumaka, Marcin Kubica, Jakub Radoszewski, Wojciech Rytter, Tomasz Waleń, A linear time algorithm for seeds computation, in: Proc. ACM-SIAM Symp. Discrete Algs., 2012, pp. 1095-1112. · Zbl 1423.68619
[66] Roman Kolpakov, Gregory Kucherov, Finding maximal repetitions in a word in linear time, in: Proc. 40th Annual IEEE Symp. Found. Computer Science, 1999, pp. 596-604. · Zbl 0948.68139
[67] Roman Kolpakov, Gregory Kucherov, Finding repeats with fixed gap, in: Proc. 7th International Symposium on String Processing & Information Retrieval, 2000, pp. 162-168.
[68] Kolpakov, Roman; Kucherov, Gregory, On maximal repetitions in words, J. Discrete Algorithms, 1, 159-186, (2000) · Zbl 0948.68139
[69] Kopylova, Evguenia; Smyth, W. F., The three squares lemma revisited, J. Discrete Algorithms, 11, 3-14, (2012) · Zbl 1238.68191
[70] Kurtz, Stefan, Reducing the space requirement of suffix trees, Softw.-Pract. Exp., 29, 13, 1149-1171, (1999)
[71] Lempel, Abraham; Ziv, Jacob, On the complexity of finite sequences, IEEE Trans. Inform. Theory, 22, 75-81, (1976) · Zbl 0337.94013
[72] Li, Yin; Smyth, W. F., Computing the cover array in linear time, Algorithmica, 32, 1, 95-106, (2002) · Zbl 0995.68189
[73] Lothaire, M., Combinatorics on words, (1997), Cambridge University Press, p. 238 · Zbl 0874.20040
[74] Main, Michael G., Detecting leftmost maximal periodicities, Discrete Appl. Math., 25, 145-153, (1989) · Zbl 0683.68033
[75] Main, Michael G.; Lorentz, Richard J., An \(O(n \log n)\) algorithm for finding all repetitions in a string, J. Algorithms, 5, 422-432, (1984) · Zbl 0547.68083
[76] Udi Manber, Gene W. Myers, Suffix array: a new method for on-line string searches, in: Proc. First Annual ACM-SIAM Symp. Discrete Algs., 1990, pp. 319-327. · Zbl 0800.68364
[77] Manber, Udi; Myers, Gene W., Suffix array: a new method for on-line string searches, SIAM J. Comput., 22, 5, 935-948, (1993) · Zbl 0784.68027
[78] Manzini, G., Two space saving tricks for linear time LCP computation, (Hagerup, T.; Katajainen, J., Proc. 9th Scandinavian Workshop on Algorithm Theory, Lecture Notes in Computer Science, LNCS, vol. 3111, (2004), Springer-Verlag), 372-383 · Zbl 1095.68755
[79] Wataru Matsubara, Kazuhiko Kusano, Akira Ishino, Hideo Bannai, Ayumi Shinohara, New lower bounds for the maximum number of runs in a string, in: Jan Holub & Jan Zdarek (Eds.), Proc. Prague Stringology Conf., 2008, pp. 140-145.
[80] McCreight, Edward M., A space-economical suffix tree construction algorithm, J. Assoc. Comput. Mach., 32, 2, 262-272, (1976) · Zbl 0329.68042
[81] Moore, Dennis; Smyth, W. F., An optimal algorithm to compute all the covers of a string, Inform. Process. Lett., 50, 5, 239-246, (1994) · Zbl 0814.68094
[82] Moore, Dennis; Smyth, W. F., A correction to “an optimal algorithm to compute all the covers of a string”, Inform. Process. Lett., 54, 101-103, (1995)
[83] Yuta Mori, Libdivsufsort. http://code.google.com/p/libdivsufsort/.
[84] Narisawa, Kaziyuki; Inenaga, Shunsuke; Bannai, Hideo; Takeda, Masayuki, Efficient computation of substring equivalence classes with suffix arrays, (Ma, Bin; Zhang, Kaizhong, Proc. 18th Annual Symp. Combinatorial Pattern Matching, Lecture Notes in Computer Science, LNCS, vol. 4580, (2007), Springer-Verlag), 340-351 · Zbl 1138.68377
[85] Nong, Ge; Zhang, Sen; Chan, Wai Hong, Linear time suffix array construction using \(D\)-critical substrings, (Kucherov, Gregory; Ukkonen, Esko, Proc. 20th Annual Symp. Combinatorial Pattern Matching, Lecture Notes in Computer Science, LNCS, vol. 5577, (2009), Springer-Verlag), 54-67 · Zbl 1247.68071
[86] Okanohara, Daisuke; Sadakane, Kunihiko, An online algorithm for finding the longest previous factors, (Halperin, D.; Mehlhorn, K., Proc. 16th Annual European Symp. on Algs., Lecture Notes in Computer Science, LNCS, vol. 5193, (2008), Springer-Verlag), 595-707 · Zbl 1158.68556
[87] Puglisi, Simon J.; Simpson, R. J., The expected number of runs in a word, Australas. J. Combin., 42, 45-54, (2008) · Zbl 1171.68657
[88] Puglisi, Simon J.; Simpson, R. J.; Smyth, W. F., How many runs can a string contain?, Theoret. Comput. Sci., 401, 165-171, (2008) · Zbl 1155.68070
[89] Puglisi, Simon J.; Smyth, W. F.; Turpin, Andrew, A taxonomy of suffix array construction algorithms, ACM Comput. Surv., 39, 2, 1-31, (2007), Article 4
[90] Simon J. Puglisi, W.F. Smyth, Munina Yusufu, Fast optimal algorithms for computing all the repeats in a string, in: Jan Holub & Jan Zdarek (Eds.), Proc. Prague Stringology Conf., 2008, pp. 161-169. · Zbl 1205.68496
[91] Puglisi, Simon J.; Smyth, W. F.; Yusufu, Munina, Fast optimal algorithms for computing all the repeats in a string, Math. Comput. Sci., 3, 4, 373-389, (2010), (special issue). “Advances in Combinatorial Algorithms II”, Manolis Christodoulakis & Costas S. Iliopoulos (Eds.) · Zbl 1205.68496
[92] Simon J. Puglisi, Andrew Turpin, Space – time tradeoffs for longest-common-prefix array computation, in: S.-H. Hong, H. Nagamochi & T. Fukunaga (Eds.), Proc. 19th Internat. Symp. Algs. & Computation, 2008, pp. 124-135. · Zbl 1183.68216
[93] Rytter, Wojciech, The number of runs in a string: improved analysis of the linear upper bound, (Durand, B.; Thomas, W., Proc. \(23 \text{rd}\) Symp. Theoretical Aspects of Computer Science, LNCS, vol. 2884, (2006), Springer-Verlag), 184-195 · Zbl 1136.68621
[94] Simpson, R. J., Intersecting periodic words, Theoret. Comput. Sci., 374, 58-65, (2007) · Zbl 1162.68033
[95] Simpson, Jamie, Modified Padovan words and the maximum number of runs in a word, Australas. J. Combin., 46, 129-145, (2010) · Zbl 1196.68180
[96] Smyth, W. F., Repetitive perhaps, but certainly not boring, Theoret. Comput. Sci., 249, 2, 343-355, (2000) · Zbl 0949.68125
[97] Smyth, Bill, Computing patterns in strings, (2003), Pearson Addison-Wesley, p. 423
[98] Smyth, W. F.; Wang, Shu, A new approach to the periodicity lemma on strings with holes, Theoret. Comput. Sci., 410, 43, 4295-4302, (2009), Special issue for Maxime Crochemore’s 60th birthday, Costas S. Iliopoulos & Wojciech Rytter (Eds.) · Zbl 1181.68181
[99] Thue, Axel, Über unendliche zeichenreihen, Norske Vid. Selsk. Skr. I Mat. Nat. Kl., Christiania, 7, 1-22, (1906) · JFM 39.0283.01
[100] Ukkonen, Esko, On-line construction of suffix trees, Algorithmica, 14, 249-260, (1995) · Zbl 0831.68027
[101] Peter Weiner, Linear pattern matching algorithms, in: Proc. 14th Annual IEEE Symp. Switching & Automata Theory, 1973, pp. 1-11.
[102] Ziv, Jacob; Lempel, Abraham, A universal algorithm for sequential data compression, IEEE Trans. Inform. Theory, 23, 337-343, (1977) · Zbl 0379.94010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.