On the modular version of Ito’s theorem on character degrees for groups of odd order. (English) Zbl 0611.20004

The following result is proved: Let \(\pi\) be a set of primes, and let p be a prime not contained in \(\pi\). Let G be a finite group of odd order, and suppose that, for all irreducible p-modular characters \(\beta\) of G, \(\beta\) (1) is not divisible by primes in \(\pi\). Then the \(\pi\)-length of G is at most 2.
Reviewer: B.Külshammer


20C20 Modular representations and characters
20D60 Arithmetic and combinatorial problems involving abstract finite groups
Full Text: DOI


[1] DOI: 10.1016/0021-8693(86)90212-7 · Zbl 0608.20005 · doi:10.1016/0021-8693(86)90212-7
[2] Nagoya Math. J 3 pp 5– (1951) · Zbl 0043.26002 · doi:10.1017/S0027763000012162
[3] Nagoya Math. J 2 pp 17– (1951) · Zbl 0042.02304 · doi:10.1017/S002776300001000X
[4] Character theory of finite groups (1976) · Zbl 0337.20005
[5] DOI: 10.1007/BF01900587 · Zbl 0083.25002 · doi:10.1007/BF01900587
[6] Endliche Gruppen I (1979) · Zbl 0412.20002
[7] DOI: 10.1016/0021-8693(86)90231-0 · Zbl 0605.20008 · doi:10.1016/0021-8693(86)90231-0
[8] DOI: 10.4153/CJM-1983-005-2 · Zbl 0509.20002 · doi:10.4153/CJM-1983-005-2
[9] DOI: 10.1016/0021-8693(81)90317-3 · Zbl 0472.20004 · doi:10.1016/0021-8693(81)90317-3
[10] Finite groups II (1982)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.