×

zbMATH — the first resource for mathematics

Biholomorphic equivalence of bounded Reinhardt domains. (English) Zbl 0611.46054
A domain D in \({\mathbb{C}}^ n\) is Reinhardt if \(0\in D\) and \((z_ 1,...,z_ n)\in D\) if and only if \((\lambda_ 1z_ 1,...,\lambda_ nz_ n)\in D\) for all \(| \lambda_ i| =1\). This notion can be extended straightforwardly to domains in a complex Banach space E with a basis \((e_ n)_{{\mathbb{N}}}\). It is natural to ask what kind of Riemann mapping theorem may hold for bounded Reinhardt domains in complex Banach spaces, i.e., what are the equivalence classes of such domains with respect to biholomorphic mappings? An answer to this question is furnished by a generalization of a theorem of T. Sunada [Math. Ann. 235, 111-128 (1978; Zbl 0357.32001)].
Let D and \(\tilde D\) be bounded Reinhardt domains in E and \(\tilde E\) with respect to the bases \((e_ n)_{{\mathbb{N}}}\) and \((\tilde e_ n)_{{\mathbb{N}}}\). \(D\) (and \(\tilde D\)) has a biholomorphic image in \(E\) (\(\tilde E\)) which is ”normalized”. D and \(\tilde D\) are biholomorphically equivalent if and only if there is a surjective linear isomorphism \(T: E\to \tilde E\) taking the normalized image of D onto that of \(\tilde D,\) and which takes \((e_ n)_{{\mathbb{N}}}\) onto a permutation of \((\tilde e_ n)_{{\mathbb{N}}}\). Specializing to those bounded Reinhardt domains which have a nontrivial group of biholomorphic automorphisms, sets of biholomorphic invariants are determined. These invariants are given in terms of the parameters of a description of such domains, which generalizes another result of Sunada, established in a joint work by the author, S. Dineen and R. M. Timoney [Compos. Math. 59, 265- 321 (1986)]. The techniques used are Jordan theoretic, bypassing the difficulty of extending the Lie theoretic techniques used in finite dimensions.
MSC:
46G20 Infinite-dimensional holomorphy
32A07 Special domains in \({\mathbb C}^n\) (Reinhardt, Hartogs, circular, tube) (MSC2010)
46H70 Nonassociative topological algebras
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] H. Auerbach , Sur les groupes lineaires , Studia Math. , 4 ( 1933 ), pp. 113 - 125 ; Studia Math. , 4 ( 1933 ), pp. 158 - 166 , and Studia Math. , 5 ( 1934 ), pp. 43 - 49 . JFM 60.1089.01 · JFM 60.1089.01
[2] T.J. Barton - S. Dineen - R. Timoney , Bounded Reinhardt domains in Banach spaces , Compositio Math. , to appear. Numdam | MR 860318 | Zbl 0661.32005 · Zbl 0661.32005 · numdam:CM_1986__59_3_265_0 · eudml:89789
[3] R. Braun - W. Kaup - H. Upmeier , On the automorphisms of circular and Reinhardt domains in complex Banach spaces , Manuscripta Math. , 25 ( 1978 ). pp. 97 - 133 . Article | MR 500878 | Zbl 0398.32001 · Zbl 0398.32001 · doi:10.1007/BF01168604 · eudml:154560
[4] R.J. Fleming - J.E. Jamison , Hermitian and adjoint abelian operators on certain Banach spaces , Pacific J. Math. , 52 ( 1974 ), pp. 67 - 84 . Article | MR 358414 | Zbl 0288.47028 · Zbl 0288.47028 · doi:10.2140/pjm.1974.52.67 · minidml.mathdoc.fr
[5] -, Isometries on certain Banach spaces , J. London Math. Soc. ( 2 ), 9 ( 1975 ), pp. 121 - 127 . MR 361733 | Zbl 0288.47027 · Zbl 0288.47027 · doi:10.1112/jlms/s2-9.1.121
[6] N.J. Kalton - G.V. Wood , Orthonormal systems on Banach spaces and their applications , Math. Proc. Cambridge Philos. Soc. , 79 ( 1976 ), pp. 493 - 510 . MR 402471 | Zbl 0327.46022 · Zbl 0327.46022 · doi:10.1017/S0305004100052506
[7] W. Kaup - H. Upmeier , Banach spaces with biholomorphically equivalent unit balls are isomorphic , Proc. Amer. Math. Soc. , 58 ( 1976 ), pp. 129 - 133 . MR 422704 | Zbl 0337.32012 · Zbl 0337.32012 · doi:10.2307/2041372
[8] H. Schneider - E.L. Turner , Matrices hermitian for an absolute norm , Linear and Multilinear Algebra , 1 ( 1973 ), pp. 9 - 31 . MR 321955 | Zbl 0278.15012 · Zbl 0278.15012 · doi:10.1080/03081087308817003
[9] L.L. Stachó , A projection principle concerning biholomorphic automorphisms , Acta Sci. Math. , 44 ( 1982 ), pp. 99 - 124 . MR 660517 | Zbl 0505.58008 · Zbl 0505.58008
[10] T. Sunada , Holomorphic equivalence problem for bounded Reinhardt domains , Math. Ann 235 ( 1978 ), pp. 111 - 128 . MR 481064 | Zbl 0357.32001 · Zbl 0357.32001 · doi:10.1007/BF01405009 · eudml:163146
[11] J.P. Vigué , Le groupe des automorphismes analytiques d’un domaine borné d’un espace de Banach complexe. Application aux domaines borné symétriques . Ann. Sci. Ècole Norm. Sup. , 9 ( 1976 ), pp. 203 - 282 . Numdam | MR 430335 · Zbl 0333.32027 · numdam:ASENS_1976_4_9_2_203_0 · eudml:81979
[12] -, Automorphismes analytiques d’un domaine de Reinhardt borné d’un espace de Banach a base , Ann. Inst. Fourier , 34 ( 1984 ), pp. 67 - 87 . Numdam | MR 746496 | Zbl 0525.32027 · Zbl 0525.32027 · doi:10.5802/aif.965 · numdam:AIF_1984__34_2_67_0 · eudml:74637
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.