Li, Peter; Yau, Shing Tung On the parabolic kernel of the Schrödinger operator. (English) Zbl 0611.58045 Acta Math. 156, 154-201 (1986). Parabolic equations of the type \[ (-\Delta -q(x,t)-\partial /\partial t)u(x,t)=0 \tag{\(*\)} \] on a Riemannian manifold are studied. Gradient estimates and a Harnack inequality for positive solutions of (\(*\)) are proved. This is applied to obtain upper bounds for the fundamental solution of (\(*\)) in the case \(q=q(x)\) and lower bounds in that case if the Ricci curvature is nonnegative. For a nonempty convex boundary Dirichlet and Neumann conditions are admitted. Estimates on the heat kernel and on Green’s function are given, furthermore estimates on the eigenvalues of the Laplacian and on the Betti numbers. Finally the behaviour of the fundamental solution of the Schrödinger operator \((\Delta -\lambda^ 2q(x)-\partial /\partial t)\) is described as \(\lambda\to \infty\). Reviewer: R.Racke Cited in 30 ReviewsCited in 484 Documents MathOverflow Questions: Gaussian bounds on Dirichlet heat kernel Gaussian upper heat kernel bounds on closed Riemannian manifolds Quick question on the constants involved in heat kernel upper bounds MSC: 58J35 Heat and other parabolic equation methods for PDEs on manifolds 58J32 Boundary value problems on manifolds 35B05 Oscillation, zeros of solutions, mean value theorems, etc. in context of PDEs Keywords:heat equation; gradient estimates; Harnack inequality; Betti numbers; Schrödinger operator PDF BibTeX XML Cite \textit{P. Li} and \textit{S. T. Yau}, Acta Math. 156, 154--201 (1986; Zbl 0611.58045) Full Text: DOI OpenURL References: [1] Aronson, D. G., Uniqueness of positive weak solutions of second order parabolic equations.Ann. Polon. Math., 16 (1965), 285–303. · Zbl 0137.29403 [2] Azencott, R., Behavior of diffusion semi-groups at infinity.Bull. Soc. Math. France, 102 (1974), 193–240. · Zbl 0293.60071 [3] Cheeger, J. & Ebin, D.,Comparison theorems in Riemannian geometry. North-Holland Math. Library (1975). · Zbl 0309.53035 [4] Cheeger, J. &Gromoll, D., The splitting theorem for manifolds of nonnegative Ricci curvature.J. Differential Geom., 6 (1971), 119–128. · Zbl 0223.53033 [5] Cheeger, J., Gromov, M. &Taylor, M., Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds.J. Differential Geom., 17 (1983), 15–33. · Zbl 0493.53035 [6] Cheeger, J. &Yau, S. T., A lower bound for the heat kernel.Comm. Pure Appl. Math., 34 (1981), 465–480. · Zbl 0481.35003 [7] Cheng, S. Y., Li, P. &Yau, S. T., On the upper estimate of the heat kernel of a complete Riemannian manifold.Amer. J. Math., 103 (1981), 1021–1063. · Zbl 0484.53035 [8] Cheng, S. Y. &Yau, S. T., Differential equations on Riemannian manifolds and their geometric applications.Comm. Pure Appl. Math., 28 (1975), 333–354. · Zbl 0312.53031 [9] Donnelly, H. &Li, P., Lower bounds for the eigenvalues of Riemannian manifolds.Michigan Math. J., 29 (1982), 149–161. · Zbl 0488.58022 [10] Fischer-Colbrie, D. &Schoen, R., The structure of complete stable minimal surfaces in 3-manifolds of non-negative scalar curvature.Comm. Pure Appl. Math., 33 (1980), 199–211. · Zbl 0439.53060 [11] Friedman, A., On the uniqueness of the Cauchy problem for parabolic equations.Amer. J. Math., 81 (1959), 503–511. · Zbl 0086.30001 [12] Gallot, S. &Meyer, D., Opérateur de courbure et Laplacien des formes différentielles d’une variété Riemannienne.J. Math. Pures Appl., 54 (1975), 259–284. · Zbl 0316.53036 [13] Gromov, M., Paul Levy’s isoperimetric inequality. IHES preprint. [14] –, Curvature, diameter, and Betti numbers.Comment Math. Helv., 56 (1981), 179–197. · Zbl 0467.53021 [15] Karp, L., & Li, P., The heat equation on complete Riemannian manifolds. Preprint. [16] Li, P. &Yau, S. T., Estimates of eigenvalues of a compact Riemannian manifold.Proc. Sympos. Pure Math., 36 (1980), 205–239. · Zbl 0441.58014 [17] Maurey, B. & Meyer, D., Un lemma de géométrie Hilbertienne et des applications à la géométrie Riemannienne. Preprint. [18] Meyer, D., Un lemme de géométrie Hilbertienne et des applications à la géométrie Riemannienne.C. R. Acad. Sci. Paris, 295 (1982), 467–469. · Zbl 0515.53039 [19] –, Sur les hypersurfaces minimales des variétés Riemanniennes a courbure de Ricci positive ou nulle.Bull. Soc. Math. France, 111 (1983), 359–366. · Zbl 0545.53045 [20] Moser, J., A Harnack inequality for parabolic equations.Comm. Pure Appl. Math., 17 (1964), 101–134. · Zbl 0149.06902 [21] Serrin, J. B., A uniqueness theorem for the parabolic equationu 1 =a(x)u xx +b(x)u x +c(x)u.Bull. Amer. Math. Soc., 60 (1954), 344. [22] Simon, B., Instantons, double wells and large deviations.Bull. Amer. Math. Soc., 8 (1983), 323–326. · Zbl 0529.35059 [23] Varopoulos, N., The Poisson kernel on positively curved manifolds.J. Funct. Anal., 44 (1981), 359–380. · Zbl 0507.58046 [24] – Green’s functions on positively curved manifolds.J. Funct. Anal., 45 (1982), 109–118. · Zbl 0497.58020 [25] Widder, D. V., Positive temperature on the infinite rod.Trans. Amer. Math. Soc., 55 (1944), 85–95. · Zbl 0061.22303 [26] Yau, S. T., Harmonic functions on complete Riemannian manifolds.Comm. Pure Appl. Math., 28 (1975), 201–228. · Zbl 0297.31005 [27] –, Some function-theoretic properties of complete Riemannian manifolds and their applications to geometry.Indiana Univ. Math. J., 25 (1976), 659–670. · Zbl 0335.53041 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.