zbMATH — the first resource for mathematics

A note on certain permutation groups in the infinite dimensional rotation group. (English) Zbl 0611.60013
Let \({\mathbb{N}}\) be the set of all natural numbers and Aut(\({\mathbb{N}})\) the group of all permutations of \({\mathbb{N}}\). Let \({\mathcal G}\) be the set of all permutations \(g\in Aut({\mathbb{N}})\) such that \[ \lim _{N\to \infty}(1/N)| \{1\leq n\leq N;\quad g(n)>N\}| =0, \] where \(| \cdot |\) denotes the cardinality. Then \({\mathcal G}\) becomes a subgroup of Aut(\({\mathbb{N}})\) and is called the Lévy group.
In the paper the author discusses the following topics: (1) characterization of \({\mathcal G}\) in terms of the density of natural numbers; (2) characterization of \({\mathcal G}\) in terms of a certain functional on the Banach space \(\ell ^{\infty}\); (3) invariance of the Lévy Laplacian under \({\mathcal G}\).

60D05 Geometric probability and stochastic geometry
20B27 Infinite automorphism groups
20P05 Probabilistic methods in group theory
Full Text: DOI
[1] Problèmes concrets d’analyse fonctionnelle, Part 3 (1951)
[2] DOI: 10.3792/pjaa.58.186 · Zbl 0511.60061 · doi:10.3792/pjaa.58.186
[3] Proc. BiBoS IV (1986)
[4] Nagoya Math. J 98 pp 87– (1985) · Zbl 0577.60012 · doi:10.1017/S0027763000021383
[5] Publ. RIMS Kyoto Univ 4 pp 595– (1969)
[6] Nagoya Math. J 108 pp 67– (1987) · Zbl 0646.60070 · doi:10.1017/S0027763000002658
[7] Ricerche Mat 34 pp 183– (1985)
[8] Applications of Mathematics 11 (1980)
[9] Trigonometric series I, Chapter III (1959)
[10] Proceedings of the International Conference on Functional Analysis and Related Topics pp 414– (1969)
[11] Series in Pure Mathematics 5 (1985)
[12] Lecture Notes (1986) · Zbl 0644.68086
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.