×

zbMATH — the first resource for mathematics

Admissible and minimax estimators of \(\lambda ^ r\) in the gamma distribution with truncated parameter space. (English) Zbl 0611.62026
The paper contains a criterion for minimaxity of estimators for the parameter \(\lambda^ r\) of the gamma distribution with truncated parameter space. A further result explicitly gives admissible estimators for the same problem. The results are applied to several other classes of distributions.
Reviewer: H.Strasser

MSC:
62F10 Point estimation
62C20 Minimax procedures in statistical decision theory
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Ghosh M, Meeden G (1977) Admissibility of linear estimators in the one parameter exponential family. Ann Statist 5:772–778 · Zbl 0385.62006 · doi:10.1214/aos/1176343899
[2] Ghosh JK, Singh R (1970) Estimation of the reciprocal of the scale parameter of a gamma density. Ann Inst Statist Math 22:51–55 · Zbl 0218.62029 · doi:10.1007/BF02506322
[3] Iliescu D, Vodâ K (1979) Some notes on Pareto distribution. Rev Roumaine Math Pures Appl 4:328–337
[4] Karlin S (1958) Admissibility for estimation with quadratic loss. Ann Math Statist 29:406–436 · Zbl 0131.17805 · doi:10.1214/aoms/1177706620
[5] Katz MW (1961) Admissible and minimax estimates of parameters in truncated spaces. Ann Math Statist 32:136–142 · Zbl 0129.32603 · doi:10.1214/aoms/1177705146
[6] Lehmann EL (1983) Theory of point estimation. John Wiley & Sons · Zbl 0522.62020
[7] Ralescu D, Ralescu S (1981) A class of nonlinear admissible estimators in the one-parameter exponential family. Ann Statist 9:177–183 · Zbl 0452.62005 · doi:10.1214/aos/1176345344
[8] Sharma D (1984) An estimating the variance of a generalized Laplace distribution. Metrika 31:85–88 · Zbl 0531.62028 · doi:10.1007/BF01915188
[9] Singh R (1972) Admissible estimators of \(\lambda\)\(\gamma\) in gamma distribution with quadratic loss. Trabajos De Estadistica 23:129–134 · Zbl 0244.62010
[10] Yosushi N (1983) Estimation of the Pareto parameter and its admissibility. Math Jap 28:149–155
[11] Vodâ VG (1982) Burr distribution revisited. Rev Roumaine Math Pures App 27:885–893 · Zbl 0496.62015
[12] Zubrzycki S (1966) Explicit formulas for minimax admissible estimators in some cases of restrictions imposed on the parameter. Zastosowania Matematyki 9:31–52 · Zbl 0152.17703
[13] Kaluszka M (1985) Minimax estimation of some class of functions of the scale parameter in the gamma and other distributions in the case of truncated parameter space (submitted to Zastosowania Matematyki)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.