Déplacements à déformations bornées et champs de contrainte mesures. (Displacements at bounded deformations and field of constraint measures).(French)Zbl 0611.73024

Let $$\Omega$$ be a connected bounded open set in $${\mathbb{R}}^ N$$ $$(N=2,3$$ mainly) with a Lipschitz boundary $$\partial \Omega$$. Let X be a finite dimensional Euclidean space, and $$L^ q(\Omega,X)$$ denotes the space of X valued, indefinitely differentiable functions with compact support in $$\Omega$$ (respectively of functions with integrable q-th power on $$\Omega$$ for the Lebesgue measure dx). The derivatives are understood in the distributions sense. Let E be the $$N(N+1)/2$$ dimensional space of symmetric tensors of order 2 on $${\mathbb{R}}^ N$$ and let M be the space of bounded measures functions on $$\Omega$$ with values in X.
The mechanical problem of locking materials has been formulated by the author. The convenient spaces for displacements and for the stresses to get the variational solutions are studied. The properties of the following spaces $(1)\quad U^ q(\Omega)=\{u\in L^ q(\Omega,X),\quad \epsilon (u)\in L^ q(\Omega,X,)\}$
$(2)\quad W^{1,q}(\Omega)=\{u\in L^ q(\Omega,X),\quad Du\in L^ q(\Omega,X)\}$
$(3)\quad Z(\Omega,E)=\{\sigma \in M^ 2(\Omega,E),\quad div\quad \sigma \in L^ 2(\Omega,X)\}$ are analyzed in detail, when $$q=\infty$$ and $$\epsilon_{ij}(u)=(u_{i,j}+u_{j,i})/2$$.
Reviewer: I.Ecsedi

MSC:

 74S30 Other numerical methods in solid mechanics (MSC2010) 49J99 Existence theories in calculus of variations and optimal control

pyuvdata
Full Text:

References:

 [1] R.S. Adams , Sobolev Spaces , Academic Press , New York , 1975 . MR 450957 | Zbl 0314.46030 · Zbl 0314.46030 [2] F. Demengel - P. Suquet , On locking materials , à paraître. Zbl 0594.73037 · Zbl 0594.73037 [3] F. Demengel , Relaxation et existence pour le problème des matériaux à blocage , à paraître. Numdam | Zbl 0579.73017 · Zbl 0579.73017 [4] F. Demengel , Fonctions à hessien bornc , Annales de l’Institut Fourier , Tome 34 , Fas. 2 ( 1984 ), pp. 151 - 190 . Numdam | MR 746501 | Zbl 0525.46020 · Zbl 0525.46020 [5] F. Demengel , Problèmes variationnels en plasticité parfaite des plaques , Numerical Functional Analysis and Optimization , vol. 6 , 1983 . MR 702462 | Zbl 0554.73030 · Zbl 0554.73030 [6] F. Demengel - R. Temam , Fonctions convexes de mesures , Indiana J. Math. , Décembre 1983 . [7] Duvau Lions , Les inéquations en mécanique et en physique , Dunod , Zbl 0298.73001 · Zbl 0298.73001 [8] Ekeland - R. Temam , Convex analysis and variationel problems , North-Hollanp . Amsterdam , 1976 . Zbl 0322.90046 · Zbl 0322.90046 [9] Gagliardo , Caratterizzazioni delle trace sulla frontera relative alcune classi di funzioni in n variabili , Rend. Sem. Mat. Univ. Padova , 27 ( 1957 ), pp. 284 - 305 . Numdam | MR 102739 | Zbl 0087.10902 · Zbl 0087.10902 [10] Geymonat-Suquet , Communication privée . [11] Gilbarg - Trudinger , Elliptic partial differential equations of second order , Springer-Verlag , Berlin - Heidelberg - New York , 1977 . MR 473443 | Zbl 0361.35003 · Zbl 0361.35003 [12] Hazelton Mirkil - DE LEEUW, A priori estimates for differential operators in L\infty norm , Illinois J. Math. , 8 ( 1964 ), pp. 112 - 124 . Article | Zbl 0131.33202 · Zbl 0131.33202 [13] R. Kohn - R. Temam , Dual spaces of stresses and strains with applications to Hencky plasticity , Appl. Math. Optim. , 10 ( 1983 ), pp. 1 - 35 . MR 701898 | Zbl 0532.73039 · Zbl 0532.73039 [14] R. Kohn - R. Temam , Principes variationnels duaux et théorèmes de l’énergie dans le modèle de plasticité de Hencky , C.R. Ac. Sc. Paris , Série I , 294 ( 1982 ), pp. 205 - 208 . MR 653575 | Zbl 0507.49012 · Zbl 0507.49012 [15] Ornstein , .A non inequality for differential operators in the L1 norm , Arch. Rational Mech. Anal. , 11 ( 1962 ), pp. 40 - 49 . MR 149331 | Zbl 0106.29602 · Zbl 0106.29602 [16] Stein , Singular Integral and Differentiability properties of functions , Princeton, New-Jersey , 1970 . Zbl 0207.13501 · Zbl 0207.13501 [17] G. Strang - R. Temam , Functions of bounded deformation , Arch. Rational Mech. Anal. , 75 ( 1980 ), pp. 7 - 21 . MR 592100 | Zbl 0472.73031 · Zbl 0472.73031 [18] Strauss , Sur les équations de la plasticité: existence et régularité des solutions , J. Mécanique , 20 ( 1981 ), pp. 3 - 39 . Zbl 0474.73030 · Zbl 0474.73030 [19] P. Suquet , Sur les équations de la plasticité. Existence et régularité de solutions , J. Mécanique , 20 ( 1981 ), pp. 3 - 39 . Zbl 0474.73030 · Zbl 0474.73030 [20] R. Temam , Problèmes Mathématiques en plasticité , Dunod , 1983 . Zbl 0547.73026 · Zbl 0547.73026 [21] Zygmund , Trigonometric Series , ( 2 nd ed.), 2 Vols., Cambridge , ENG., 1959 . Zbl 0367.42001 · Zbl 0367.42001 [22] W. Prager , On Ideal locking material , Trans. of the Soc. of Rheology , 1 ( 1957 ), pp. 169 - 175 . Zbl 0098.37702 · Zbl 0098.37702 [23] F. Demengel , Théorèmes de trace et de densité pour des espaces fonctionnels de la mécanique non linéaire, prépublication, Mathématique , Université Paris-Sud , Orsay , 1984 . [24] O.-M. Lagache , Treillis de volume minimal dans une région donné, J . Mécanique , 20 ( 1981 ), pp. 415 - 448 . Zbl 0473.73099 · Zbl 0473.73099 [25] K.T. Smith , Formulas to represent functions by their derivatives , Math. Ann. , 188 ( 1970 ), pp. 53 - 57 . Zbl 0187.03102 · Zbl 0187.03102 [26] L. Tartar , Communication privée .
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.