Finite element solution of 3-D viscous flow problems using nonstandard degrees of freedom. (English) Zbl 0611.76038

The author presents a detailed study of well-posedness and convergence of two-mixed finite element methods for solving three-dimensional incompressible Stokes equations in a polyhedral convex domain \(\Omega\) of \({\mathbb{R}}^ 3\). They are generalizations to the three-dimensional case of two classical velocity-pressure triangular elements: the (P2)-(P0) finite element of M. Fortin [Calcul numérique des écoulements des fluides de Bingham et des fluides Newtoniens incompressibles par la méthode des éléments finis, Thèse de Doctorat d’Etat, Université Pierre-et-Marie-Curie, Paris (1972)] and its ”bubble- version” that was proposed by M. Crouzeix and P. A. Raviart [Revue Franc. Automat. Inform. Rech. Operat. 7(1973), R3, 33-76 (1974; Zbl 0302.65087)]. For each h, the domain \(\Omega\) is split into a finite number of tetrahedrons with maximal edge length of the order of h. The family \(\{\tau_ h\}\) of three-dimensional triangulations is assumed to be regular in the sense that there exists a lower bound \(\theta_ 0>0\) for the angles between adjacent faces of the tetrahedrons of \(\tau_ h\), for all h.
For both finite elements the author proves optimal convergence results. More precisely, for the finite element i, \(i=1,2\), assuming that the velocity belongs to \(H^{1+i}(\Omega)^ 3\) and that the pressure belongs to \(H^ i(\Omega)\), he obtains an \(O(h^ i)\) error estimate for the \(H^ 1(\Omega)^ 3\)-norm of the velocity and for the \(L^ 2(\Omega)\)-norm of the pressure. To establish these convergence results, the author proves in passing that a discrete Babuška-Brezzi inf-sup condition holds for these finite elements. Next, he uses standard approximation results (Cea’s lemma) to conclude.
Reviewer: C.Conca


76D07 Stokes and related (Oseen, etc.) flows
65N15 Error bounds for boundary value problems involving PDEs
35Q30 Navier-Stokes equations


Zbl 0302.65087
Full Text: DOI


[1] R. A. Adams, Sobolev Spaces. Academic Press, New York, 1975.
[2] F. Brezzi, On the existence, uniqueness and approximation of saddle point problems arising from Lagrange multipliers. RAIRO Anal. Numér.,8-R2 (1974), 120–151.
[3] P.G. Ciarlet, The Finite Element Method for Elliptic Problems, North Holland, Amsterdam, 1978. · Zbl 0383.65058
[4] M. Crouzeix and P. A. Raviart, Conforming and nonconforming finite element methods for solving stationary Stokes’ equations (I). RAIRO,R-3 (1973) 33–76. · Zbl 0302.65087
[5] M. Fortin, Calcul numérique des écoulements des fluides de Bingham et des fluides newtoniens incompressibles par la méthode des éléments finis. Thèse de Doctorat d’Etat, Univ. Pierre et Marie Curie, Paris, 1972.
[6] V. Girault and P. A. Raviart Finite Element Approximation of the Navier-Stokes Equations. Lecture Notes in Math., Springer-Verlag, Berlin, 1979. · Zbl 0413.65081
[7] P. A. Raviart and J. M. Thomas, Introduction à l’Analyse Numérique des Équations aux Derivées Partielles, Masson, Paris, 1983.
[8] V. Ruas, Méthodes d’éléments finis en élasticité incompressible non linéaire et diverses contributions à l’approximation des problèmes aux limites. Thèse de Doctorat d’Etat. Univ. Pierre et Marie Curie, Paris, 1982.
[9] V. Ruas, Une méthode d’éléments finis non conformes en vitesse pour le probléme de Stokes tridimensionnel. Mat. Apl. e Comp.,1 (1982), 53–73. · Zbl 0489.76049
[10] V. Ruas, A complete three-dimensional version of the quadratic velocity-constant pressure finite element method for fluid flow problems. Rev. Brasil. Comps,3, No. 2 (1983/1984), 91–97.
[11] R. Stenberg, Analysis of mixed finite element methods for the Stokes problem: a unified approach. Math. Comp.,42 (1984), 9–32. · Zbl 0535.76037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.