# zbMATH — the first resource for mathematics

Navier-Stokes equations for compressible fluids: Global existence and qualitative properties of the solutions in the general case. (English) Zbl 0611.76082
The authors consider the equations which describe the motion of a viscous compressible and heat-conductive fluid, taking into consideration the case of inflow and/or outflow through the boundary.
First, they prove the existence of a global (in time) unique solution under the usual assumption that the data of the problem are small enough and assuming also that on the boundary there is no inflow. In the presence of inflow, it is shown that a global solution (with bounded and strictly positive density) cannot be found using their method. Second, they prove the asymptotic equivalence of solutions which initially have the same amount of mass, in the case of no outflow. Finally, they prove the existence of periodic and stationary solutions in the case of vanishing normal component of the velocity on the boundary.
The previous stability result is an essential tool for proving the existence of these solutions. In the presence of only inflow or only outflow it is shown that periodic and stationary solutions cannot exist. The case of inflow and outflow at the same time is an open problem. The paper is a generalization of the results proved in Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 10, 607-647 (1983; Zbl 0542.35062) by the first author.
Reviewer: P.Secchi

##### MSC:
 76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics 35Q30 Navier-Stokes equations
Full Text:
##### References:
 [1] Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II. Commun. Pure Appl. Math.17, 35-92 (1964) · Zbl 0123.28706 · doi:10.1002/cpa.3160170104 [2] Beirão da Veiga, H.: Diffusion on viscous fluids. Existence and asymptotic properties of solutions. Ann. Sc. Norm. Super. Pisa, Cl. Sci. (IV)10, 341-355 (1983) · Zbl 0531.76095 [3] Cattabriga, L.: Su un problema al contorno relativo al sistema di equazioni di Stokes. Rend. Semin. Mat. Univ. Padova31, 308-340 (1961) · Zbl 0116.18002 [4] Fiszdon, W., Zajaczkowski, W.M.: The initial boundary value problem for the flow of a barotropic viscous fluid, global in time. Appl. Anal.15, 91-114 (1983) · Zbl 0505.76080 · doi:10.1080/00036818308839441 [5] Fiszdon, W., Zajaczkowski, W.M.: Existence and uniqueness of solutions of the initial boundary value problem for the flow of a barotropic viscous fluid, local in time. Arch. Mech.35, 497-516 (1983) · Zbl 0559.76059 [6] Fiszdon, W., Zajaczkowski, W.M.: Existence and uniqueness of solutions of the initial boundary value problem for the flow of a barotropic viscous fluid, global in time. Arch. Mech.35, 517-532 (1983) · Zbl 0487.76065 [7] Giaquinta, M., Modica, G.: Nonlinear systems of the type of the stationary Navier-Stokes system. J. Reine Angew. Math.330, 173-214 (1982) · Zbl 0492.35018 [8] Graffi, D.: II teorema di unicità nella dinamica dei fluidi compressibili. J. Rat. Mech. Anal.2, 99-106 (1953) · Zbl 0050.19604 [9] Itaya, N.: On the Cauchy problem for the system of fundamental equations describing the movement of compressible viscous fluids. Kodai Math. Sem. Rep.23, 60-120 (1971) · Zbl 0219.76080 · doi:10.2996/kmj/1138846265 [10] Judovi?, V.I.: A two-dimensional problem of unsteady flow of an ideal incompressible fluid across a given domain. Am. Math. Soc. Trans. (2)57, 277-304 (1966) [previously in Mat. Sb. (N.S.)64(106), 562-588 (1964) (in Russian)] [11] Lions, J.L., Magenes, E.: Problèmes aux limites non homogènes et applications, 1. Paris: Dunod 1968 · Zbl 0165.10801 [12] Lukaszewicz, G.: An existence theorem for compressible viscous and heat conducting fluids. Math. Meth. Appl. Sci.6, 234-247 (1984) · Zbl 0567.76072 · doi:10.1002/mma.1670060116 [13] Lukaszewicz, G.: On the first initial-boundary value problem for the equations of motion of viscous and heat conducting gas. Arch. Mech.36(1984) (to appear) [14] Marcati, P., Valli, A.: Almost-periodic solutions to the Navier-Stokes equations for compressible fluids. Boll. Unione Mat. Ital. (to appear) · Zbl 0633.76067 [15] Matsumura, A., Nishida, T.: The initial value problem for the equations of motion of viscous and heat-conductive gases. J. Math. Kyoto Univ.20, 67-104 (1980) · Zbl 0429.76040 [16] Matsumura, A., Nishida, T.: The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids. Proc. Jpn. Acad. Ser. A55, 337-342 (1979) · Zbl 0447.76053 · doi:10.3792/pjaa.55.337 [17] Matsumura, A., Nishida, T.: The initial boundary value problem for the equations of motion of compressible viscous and heat-conductive fluid. Preprint University of Wisconsin, MRC Technical Summary Report no. 2237 (1981) · Zbl 0543.76099 [18] Matsumura, A., Nishida, T.: Initial boundary value problems for the equations of motion of general fluids. In. Computing methods in applied sciences and engineering, V, Glowinski, R., Lions, J.L. (ed.). Amsterdam, New York, Oxford: North-Holland 1982 [19] Matsumura, A., Nishida, T.: Initial boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids. Commun. Math. Phys.89, 445-464 (1983) · Zbl 0543.76099 · doi:10.1007/BF01214738 [20] Nash, J.: Le problème de Cauchy pour les équations différentielles d’un fluide général. Bull. Soc. Math. Fr.90, 487-497 (1962) · Zbl 0113.19405 [21] Padula, M.: Existence and uniqueness for viscous steady compressible motions. Arch. Ration. Mech. Anal. (to appear) · Zbl 0644.76086 [22] Secchi, P., Valli, A.: A free boundary problem for compressible viscous fluids. J. Reine Angew. Math.341, 1-31 (1983) · Zbl 0502.76082 · doi:10.1515/crll.1983.341.1 [23] Serrin, J.: Mathematical principles of classical fluid mechanics, in ?Handbuch der Physik?, Bd. VIII/1. Berlin, Göttingen, Heidelberg: Springer 1959 [24] Serrin, J.: On the stability of viscous fluid motions. Arch. Ration. Mech. Anal.3, 1-13 (1959) · Zbl 0089.40803 · doi:10.1007/BF00284160 [25] Serrin, J.: A note on the existence of periodic solutions of the Navier-Stokes equations. Arch. Ration. Mech. Anal.3, 120-122 (1959) · Zbl 0089.19102 · doi:10.1007/BF00284169 [26] Serrin, J.: On the uniqueness of compressible fluid motions. Arch. Ration. Mech. Anal.3, 271-288 (1959) · Zbl 0089.19103 · doi:10.1007/BF00284180 [27] Solonnikov, V.A.: Solvability of the initial-boundary value problem for the equations of a viscous compressible fluid. J. Sov. Math.14, 1120-1133 (1980) [previously in Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova (LOMI)56, 128-142 (1976) (in Russian)] · Zbl 0451.35092 · doi:10.1007/BF01562053 [28] Tani, A.: On the first initial-boundary value problem of compressible viscous fluid motion. Publ. Res. Inst. Math. Sci.13, 193-253 (1977) · Zbl 0366.35070 · doi:10.2977/prims/1195190106 [29] Valli, A.: Uniqueness theorems for compressible viscous fluids, especially when the Stokes relation holds. Boll. Unione Mat. Ital., Anal. Funz. Appl. (V)18-C, 317-325 (1981) · Zbl 0484.76075 [30] Valli, A.: An existence theorem for compressible viscous fluids. Ann. Mat. Pura Appl. (IV)130, 197-213 (1982); (IV)132, 399-400 (1982) · Zbl 0599.76081 · doi:10.1007/BF01761495 [31] Valli, A.: Periodic and stationary solutions for compressible Navier-Stokes equations via a stability method. Ann. Sc. Norm. Super. Pisa (IV)10, 607-647 (1983) · Zbl 0542.35062 [32] Vol’pert, A.I., Hudjaev, S.I.: On the Cauchy problem for composite systems of nonlinear differential equations. Math. USSR-Sb16 517-544 (1972) [previously in Mat. Sb. (N.S.)87(129), 504-528 (1972) (in Russian)] · Zbl 0251.35064 · doi:10.1070/SM1972v016n04ABEH001438
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.