×

zbMATH — the first resource for mathematics

Quantification of numerically induced mixing and dissipation in discretisations of shallow water equations. (English) Zbl 1253.65136
Summary: The concepts of numerical mixing and numerical dissipation are developed here for one-dimensional advection-diffusion equations for velocity and a scalar tracer where depth changes due to transport divergence are considered. It is shown for the explicit first-order upwind (FOU) scheme that the numerical mixing of the scalar tracer due to the discretisation of the tracer advection (i.e., the decay of the tracer variance) can be calculated by the difference of the advected tracer square and the square of the advected tracer, divided by the time step. This method is generalised for other advection schemes. An equivalent method is introduced for the numerical dissipation which is a kinetic energy loss due to the discretisation of the velocity advection. In a one-dimensional application the performance of both analysis methods is demonstrated by comparing the numerical mixing and dissipation to physical mixing and dissipation for two advection schemes, which are the FOU and a monotone TVD scheme. It is finally discussed how the one-dimensional analysis method can be generalised for three-dimensional primitive equation models of the coastal ocean.
MSC:
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
35Q35 PDEs in connection with fluid mechanics
76M25 Other numerical methods (fluid mechanics) (MSC2010)
Software:
GETM
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Arakawa A., Lamb V.R.: Computational design of the basic dynamical processes of the UCLA general circulation model. Methods Comput. Phys. 17, 173 (1994)
[2] Burchard, H., Bolding, K.: GETM–a general estuarine transport model. Scientific documentation. Tech. Rep. EUR 20253 EN, European Commission (2002)
[3] Burchard H., Bolding K., Villarreal M.R.: Three-dimensional modelling of estuarine turbidity maxima in a tidal estuary. Ocean Dyn. 54(2), 250–265 (2004). doi: 10.1007/s10236-003-0073-4 · doi:10.1007/s10236-003-0073-4
[4] Burchard H., Janssen F., Bolding K., Umlauf L., Rennau H.: Model simulations of dense bottom currents in the Western Baltic Sea. Cont. Shelf Res. 29(1), 205–220 (2009). doi: 10.1016/j.csr.2007.09.010 · doi:10.1016/j.csr.2007.09.010
[5] Burchard H., Petersen O.: Hybridisation between \(\sigma\) and z coordinates for improving the internal pressure gradient calculation in marine models with steep bottom slopes. Int. J. Numer. Methods Fluids 25, 1003–1023 (1997) · Zbl 0898.76072 · doi:10.1002/(SICI)1097-0363(19971115)25:9<1003::AID-FLD600>3.0.CO;2-E
[6] Burchard H., Rennau H.: Comparative quantification of physically and numerically induced mixing in ocean models. Ocean Model. 20, 293–311 (2008) · doi:10.1016/j.ocemod.2007.10.003
[7] Fox-Kemper B., Ferrari R., Hallberg R.: Parameterization of mixed layer eddies. Part I: theory and diagnosis. J. Phys. Oceanogr. 38, 1145–1165 (2008) · doi:10.1175/2007JPO3792.1
[8] Getzlaff J., Nurser G., Oschlies A.: Diagnostics of diapycnal diffusivity in z-level ocean models part I: 1-dimensional case studies. Ocean Model. 35, 173–186 (2010). doi: 10.1016/j.ocemod.2010.07.004 · doi:10.1016/j.ocemod.2010.07.004
[9] Getzlaff, J., Nurser, G., Oschlies, A.: Diagnostics of diapycnal diffusion in z-level ocean models. Part II: 3-dimensional OGCM. Ocean Model. 45–46, 27–36 (2012)
[10] Griffies S.M., Pacanowski R.C., Hallberg R.W.: Spurious diapycnal mixing associated with advection in a z-coordinate ocean model. Mon. Weather Rev. 128, 538–564 (2000) · doi:10.1175/1520-0493(2000)128<0538:SDMAWA>2.0.CO;2
[11] Haney R.L.: On the pressure gradient force over steep topography in sigma coordinate ocen models. J. Phys. Oceanogr. 21, 610–619 (1991) · doi:10.1175/1520-0485(1991)021<0610:OTPGFO>2.0.CO;2
[12] Hansen B., Østerhus S.: Faroe Bank channel overflow 1995–2005. Prog. Oceanogr. 75, 817–856 (2007) · doi:10.1016/j.pocean.2007.09.004
[13] Harten A.: High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49, 357–393 (1983) · Zbl 0565.65050 · doi:10.1016/0021-9991(83)90136-5
[14] Hofmeister R., Beckers J.M., Burchard H.: Realistic modelling of the exceptional inflows into the central Baltic Sea in 2003 using terrain-following coordinates. Ocean Model. 39(3–4), 233–247 (2011). doi: 10.1016/j.ocemod.2011.04.007 · doi:10.1016/j.ocemod.2011.04.007
[15] Holt J., Umlauf L.: Modelling the tidal mixing fronts and seasonal stratification of the Northwest European Continental shelf. Cont. Shelf Res. 28, 887–903 (2008) · doi:10.1016/j.csr.2008.01.012
[16] Kliem N., Pietrzak J.D.: On the pressure gradient error in sigma coordinate ocean models: A comparison with a laboratory experiment. J. Geophys. Res. 104, 29781–29800 (1999) · doi:10.1029/1999JC900188
[17] Leonard B.P.: The ULTIMATE conservative difference scheme applied to unsteady one-dimensional advection. Comput. Methods Appl. Mech. Eng. 88, 17–74 (1991) · Zbl 0746.76067 · doi:10.1016/0045-7825(91)90232-U
[18] Mellor G.L., Ezer T., Oey L.Y.: The pressure gradient conundrum of sigma coordinate ocean models. J. Atmos. Ocean. Technol. 11, 1126–1134 (1994) · doi:10.1175/1520-0426(1994)011<1126:TPGCOS>2.0.CO;2
[19] Morales Maqueda M.A., Holloway G.: Second-order moment advection scheme applied to Arctic Ocean simulation. Ocean Model. 14, 197–221 (2006) · doi:10.1016/j.ocemod.2006.05.003
[20] Pietrzak J.D.: The use of TVD limiters for forward-in-time upstream-biased advection schemes in ocean modeling. Mon. Weather Rev. 126, 812–830 (1998) · doi:10.1175/1520-0493(1998)126<0812:TUOTLF>2.0.CO;2
[21] Rennau H., Burchard H.: Quantitative analysis of numerically induced mixing in a coastal model application. Ocean Dyn. 59, 671–687 (2009) · doi:10.1007/s10236-009-0201-x
[22] Riemenschneider U., Legg S.: Regional simulations of the Faroe Bank Channel overflow in a level model. Ocean Model. 17, 93–122 (2007) · doi:10.1016/j.ocemod.2007.01.003
[23] Shchepetkin A.F., McWilliams J.C.: A method for computing horizontal pressure-gradient force in an oceanic model with a nonaligned vertical coordinate. J. Geophys. Res. 108(C3), 3090 (2003). doi: 10.1029/2001JC001 · doi:10.1029/2001JC001047
[24] Warner J.C., Sherwood C.R., Arango H.G., Signell R.P.: Performance of four turbulence closure models implemented using a generic length scale method. Ocean Model. 8, 81–113 (2005) · doi:10.1016/j.ocemod.2003.12.003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.