×

Three embeddings of the Klein simple group into the Cremona group of rank three. (English) Zbl 1272.14013

A classical and fundamental problem of birational geometry is the description of the Cremona group \(\mathrm{Cr}_n(\mathbb{C})\) of birational automorphisms of \(\mathbb{P}^n\). The cases \(n=1,2\) are well understood. For \(n=1\) it is \(\mathrm{PGL}(2,\mathbb{C})\) and for \(n=2\) it is generated by a single quadratic transformation and automorphisms. Moreover, the finite subgroups of \(\mathrm{Cr}_2(\mathbb{C})\) have been classified [I. V. Dolgachev and V. A. Isovskikh, Progress in Mathematics 269, 443–548 (2009; Zbl 1219.14015)]. However, at the time of this writing, very little is known about the structure of the Cremona groups \(\mathrm{Cr}_n(\mathbb{C})\), for \(n \geq 3\). One possible way to analyze their structure is to study their finite subgroups. For \(n=3\) it is known that the only finite simple non-abelian subgroups of \(\mathrm{Cr}_3(\mathbb{C})\) are \(A_4, \mathrm{PSL}_2(\mathbb{F}_7), A_6, A_7, \mathrm{PSL}_2(\mathbb{F}_8)\) and \(\mathrm{PSU}(\mathbb{F}_2)\) [Y. Prokhorov, J. Algebr. Geom. 21, No3, 563–600 (2012; Zbl 1257.14011)]. Moreover, the authors have shown that up to conjugation there is exactly one subgroup of \(\mathrm{Cr}_3(\mathbb{C})\) isomorphic to \(\mathrm{PSL}_2(\mathbb{F}_8)\), exactly one subgroup isomorphic to \(A_7\), two subgroups isomorphic to \(\mathrm{PSU}(\mathbb{F}_2)\) and at least five isomorphic to \(A_6\).
In this paper it is shown that the Cremona group \(\mathrm{Cr}_3(\mathbb{C})\) contains at least 3 non-conjugate subgroups isomorphic to \(\mathrm{PSL}_2(\mathbb{F}_7)\). In order to prove this the authors construct a smooth rational threefold \(X\) such that \(\mathrm{Aut}(X) \cong \mathrm{PSL}_2(\mathbb{F}_7)\). Moreover they show that \(X\) is birationally \(G\)-superrigid, where \(G=\mathrm{PSL}_2(\mathbb{F}_7)\). Consequently \(\mathrm{Bir}^G(X)=\mathrm{Aut}(X)=\mathrm{PSL}_2(\mathbb{F}_7)\), where \(\mathrm{Bir}^G(X)\) is the group of \(G\)-invariant birational automorphisms of \(X\). From this it follows that the normalizer of \(\mathrm{PSL}_2(\mathbb{F}_7)\) in \(\mathrm{Bir}(X)\) is isomorphic to \(\mathrm{PSL}_2(\mathbb{F}_7)\). Then considering that \(\mathrm{Bir}(X)\cong \mathrm{Cr}_3(\mathbb{C})\), \(\mathrm{PSL}_2(\mathbb{F}_7)\) is embedded in \(\mathrm{Cr}_3(\mathbb{C})\) with normalizer isomorphic to \(\mathrm{PSL}_2(\mathbb{F}_7)\). Another embedding of \(\mathrm{PSL}_2(\mathbb{F}_7)\) in \(\mathrm{Cr}_3(\mathbb{C})\) is obtained by considering a faithful irreducible four dimensional representation of \(\mathrm{SL}_2(\mathbb{F}_7)\). Then the authors shown that this embedding of \(\mathrm{PSL}_2(\mathbb{F}_7)\) has normalizer \(\mathrm{PSL}_2(\mathbb{F}_7) \times \mathbb{Z}_2\). From this it follows that there are at least three non-conjugate subgroups of \(\mathrm{Cr}_3(\mathbb{C})\) isomorphic to \(\mathrm{PSL}_2(\mathbb{F}_7)\).

MSC:

14E07 Birational automorphisms, Cremona group and generalizations
14E05 Rational and birational maps
14E30 Minimal model program (Mori theory, extremal rays)

Software:

Magma
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] A. Beauville, Non-rationality of the symmetric sextic Fano threefold, arXiv: math/1102.1255 (2011).
[2] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system. I. The user language, J. Symb. Comp. 24 (1997), 235–265. · Zbl 0898.68039
[3] 3 H. Blichfeldt, Finite Collineation Groups, University of Chicago Press, Chicago, 1917. · JFM 46.0188.01
[4] I. Cheltsov, Log canonical thresholds of del Pezzo surfaces, Geom. Funct. Anal. 18 (2008), 1118–1144. · Zbl 1161.14030
[5] I. Cheltsov, Two local inequalities, arXiv:math/0908.0401 (2009).
[6] И. А. Чельцов, К. А. Шрамов, Лог-канонические nороги неособых трхмерных многообразий фано, УМН 63 (2008), no. 5(383), 73–180. Engl. transl.: I. Cheltsov, C. Shramov, Log canonical thresholds of smooth Fano threefolds, Russian Mathematical Surveys 63 (2008), no. 5, 859–958. · Zbl 1154.68045
[7] I. Cheltsov, C. Shramov, On exceptional quotient singularities, Geometry and Topology 15 (2011), 1843–1882. · Zbl 1232.14001
[8] I. Cheltsov, C. Shramov, Five embeddings of one simple group, to appear in Transactions of AMS, arXiv:math/0910.1783 (2009). · Zbl 1291.14060
[9] J. Conway, R. Curtis, S. Norton, R. Parker, R. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford, 1985. · Zbl 0568.20001
[10] A. Corti, Singularities of linear systems and 3-fold birational geometry, in: Explicit Birational Geometry of 3-Folds, London Math. Soc. Lecture Note Ser., Vol. 281, Cambridge Univ. Press, Cambridge, 2000, pp. 259–312. · Zbl 0960.14017
[11] I. Dolgachev, Invariant stable bundles over modular curves X(p), in: Recent Progress in Algebra (Taejon/Seoul, 1997), Contemporary Mathematics, Vol. 224, Amer. Math. Soc., Providence, RI, 1999, pp. 65–99. · Zbl 0977.14012
[12] I. Dolgachev, V. Iskovskikh, Finite subgroups of the plane Cremona group, in: Algebra, Arithmetic, and Geometry: in Honor of Yu. I. Manin, Vol. I, Progress in Mathematics, Vol. 269, Birkhäuser Boston, Boston, MA, 2009, pp. 443–548. · Zbl 1219.14015
[13] I. Dolgachev, V. Kanev, Polar covariants of plane cubics and quartics, Adv. in Math. 98 (1993), 216–301. · Zbl 0791.14013
[14] S. Donaldson, Kähler geometry on toric manifolds, and some other manifolds with large symmetry, in: Handbook of Geometric Analysis, no. 1, Advanced Lectures in Mathematics, Vol. 1, Int. Press, Somerville, MA, 2008, pp. 29–75. · Zbl 1161.53066
[15] W. Edge, The Klein group in three dimensions, Acta Math. 79 (1947), 153–223. · Zbl 0029.41201
[16] D. Eisenbud, J.-H. Koh, Remarks on points in a projective space, in: Commutative Algebra (Berkeley, CA, 1987), Math. Sci. Res. Inst. Publ., Vol. 15, Springer, New York, 1989, pp. 157–172. · Zbl 0736.14022
[17] R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics 52, Springer-Verlag, New York, 1977. Russian transl.: Р. Хартсхорн, Алгебраическая геометрия, Мир, М., 1981.
[18] M. Gross, S. Popescu, Calabi–Yau threefolds and moduli of abelian surfaces I, Compositio Math. 127 (2001), 169–228. · Zbl 1063.14051
[19] V. Iskovskikh, Yu. Prokhorov, Fano varieties, in: Algebraic Geometry, V, Encyclopaedia of Mathematical Sciences, Vol. 47, Springer, Berlin, 1999, pp. 1–247. · Zbl 0912.14013
[20] Y. Kawamata, On Fujita’s freeness conjecture for 3-folds and 4-folds, Math. Ann. 308 (1997), 491–505. · Zbl 0909.14001
[21] Y. Kawamata, Subadjunction of log canonical divisors II, Amer. J. Math. 120 (1998), 893–899. · Zbl 0919.14003
[22] J. Kollár, Singularities of pairs, in: Algebraic Geometry (Santa Cruz, 1995), Proceedings of Symposia in Pure Mathematics, Vol. 62, Part 1, Amer. Math. Soc., Providence, RI, 1997, pp. 221–287. · Zbl 0905.14002
[23] R. Lazarsfeld, Positivity in Algebraic Geometry II, Springer-Verlag, Berlin, 2004. · Zbl 1093.14500
[24] S. Levy, ed., The Eightfold Way: The Beauty of Klein’s Quartic Curve, MSRI Publications, Vol. 35, Cambridge University Press, 1999. · Zbl 0941.00006
[25] C. Mallows, N. Sloane, On the invariants of a linear group of order 336, Proc. Cambridge Phil. Soc. 74 (1973), 435–440. · Zbl 0268.20033
[26] N. Manolache, F.-O. Schreyer, Moduli of (1, 7)-polarized abelian surfaces via syzygies, Math. Nachr. 226 (2001), 177–203. · Zbl 0996.14019
[27] A. Marini, On a family of (1, 7)-polarised abelian surfaces, Math. Scand. 95 (2004), 181–225. · Zbl 1076.14056
[28] F. Melliez, K. Ranestad, Degenerations of (1, 7)-polarized abelian surfaces, Math. Scand. 97 (2005), 161–187. · Zbl 1094.14031
[29] S. Mukai, Finite groups of automorphisms of K3 surfaces and the Mathieu group, Invent. Math. 94 (1988), 183–221. · Zbl 0705.14045
[30] S. Mukai, Biregular classification of Fano 3-folds and Fano manifolds of coindex 3, Proc. Nat. Acad. Sci. USA 9 (1989), 3000–3002. · Zbl 0679.14020
[31] S. Mukai, Fano 3-folds, in: Complex Projective Geometry (Trieste, 1989/Bergen, 1989), London Math. Soc. Lecture Note Series, Vol. 179, Cambridge Univ. Press, Cambridge, 199, pp. 255–263
[32] K. Oguiso, D.-Q. Zhang, The simple group of order 168 and K3 surfaces, in: Complex Geometry (Göttingen, 2000), Springer, Berlin, 2002, pp. 165–184. · Zbl 1046.14017
[33] Yu. Prokhorov, Blow-ups of canonical singularities, in: Algebra (Moscow, 1998), de Gruyter, Berlin (2000), pp. 301–317. · Zbl 1003.14005
[34] Ю. Прохоров, Зкзотические многообразия фано, Вестник Моск. унив., сер. мат., мех. (1990), no. 3, 34–37, 111. Engl. transl.: Yu. Prokhorov, Exotic Fano varieties, Moscow Univ. Math. Bull. 45 (1990), no. 3, 36–38. · Zbl 0342.02023
[35] Yu. Prokhorov, Simple finite subgroups of the Cremona group of rank 3, arXiv: math/0908.0678 (2009).
[36] K. Ranestad, F.-O. Schreyer, Varieties of sums of powers, J. Reine Angew. Math. 525 (2000), 147–181. · Zbl 1078.14506
[37] F.-O. Schreyer, Geometry and algebra of prime Fano 3-folds of genus 12, Compositio Math. 127 (2001), 297–319. · Zbl 1049.14036
[38] J.-P. Serre, A Minkowski-style bound for the order of the finite subgroups of the Cremona group of rank 2 over an arbitrary field, Moscow Math. J. 9 (2009), 193–208.
[39] T. Springer, Invariant Theory, Lecture Notes in Mathematics, Vol. 585, Springer-Verlag, Berlin, 1977. Russian transl.: Т. Спрингер, Теория инвариантов, Мир, М., 1981.
[40] G. Tian, On Kähler–Einstein metrics on certain Kähler manifolds with c 1(M)>0, Invent. Math. 89 (1987), 225–246. · Zbl 0599.53046
[41] G. Tian, Kähler–Einstein metrics with positive scalar curvature, Invent. Math. 130 (1997), 1–37. · Zbl 0892.53027
[42] G. Xiao, Galois covers between K3 surfaces, Annales de l’Institut Fourier 46 (1996), 73–88. · Zbl 0845.14026
[43] S. Yau, Y. Yu, Gorenstein Quotient Singularities in Dimension Three, Mem. Amer. Math. Soc., Vol. 505, Providence, RI, 1993. · Zbl 0799.14001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.