×

zbMATH — the first resource for mathematics

On simultaneously identifying outliers and heteroscedasticity without specific form. (English) Zbl 1252.62070
Summary: Assuming homogeneous variance in a normal regression model is not always appropriate as invalid standard inference procedures may result from the improper estimation of the standard error when the disturbance process in a regression model presents heteroscedasticity. When both outliers and heteroscedasticity exist, the inflation of the scale’s estimate can deteriorate. Using graphical analysis, this study identifies outliers under heteroscedastic errors without specifying a functional form. A jigsaw plot with two kinds of cut-off points differentiates both outlying and heteroscedastic characteristics for each observation in the data. The proposed approach is based on the concept of the weighted least absolute deviation estimator. Furthermore, plugging the resulting residuals into the estimation of the heteroscedasticity consistent covariance matrix leads to a robust quasi-\(t\) test for the estimated coefficients.
MSC:
62J05 Linear regression; mixed models
62-09 Graphical methods in statistics (MSC2010)
Software:
alr3; GLIM
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aitkin, M., Modelling variance heterogeneity in normal regression using GLIM, Applied statistics, 36, 332-339, (1987)
[2] Atkinson, A.C., Plots, transformations and regression, (1985), Oxford University Press Oxford · Zbl 0582.62065
[3] Atkinson, A.C.; Riani, M., Robust diagnostic and regression analysis, (2000), Springer New York · Zbl 1014.62086
[4] Belsey, D.; Kuh, E.; Welch, R.E., Regression diagnostics: identifying influential data and sources of collinearity, (1980), John Wiley New York · Zbl 0479.62056
[5] Bianco, A.; Boente, G.; di Rienzo, J., Some results for robust GM-based estimators in heteroscedastic regression models, Journal of statistical planning and inference, 89, 215-242, (2000) · Zbl 0997.62023
[6] Butler, R.W.; Davies, P.L.; Jhun, M., Asymptotics for the minimum covariance determinant estimator, The annals of statistics, 21, 1385-1400, (1993) · Zbl 0797.62044
[7] Cheng, T.-C., Robust diagnostics for heteroscedastic regression model, Computational statistics and data analysis, 55, 1845-1866, (2011) · Zbl 1328.65024
[8] Chesher, A.; Jewitt, I., The bias of a heteroskedasticity consistent covariance matrix estimator, Econometrica, 55, 1217-1222, (1987) · Zbl 0634.62051
[9] Cook, R.D., Assessment of local influence (with discussion), Journal of the royal statistical society. series B, 48, 133-169, (1986) · Zbl 0608.62041
[10] Cook, R.D.; Weisberg, S., Diagnostics for heteroscedasticity in regression, Biometrika, 70, 1-10, (1983) · Zbl 0502.62063
[11] Cooper, D.M.; Thompson, R., A note on the estimation of the parameters of the autoregressive-moving average process, Biometrika, 64, 625-628, (1977) · Zbl 0368.62076
[12] Cribari-Neto, F., Asymptotic inference under heteroskedasticity of unknown form, Computational statistics and data analysis, 45, 215-233, (2004) · Zbl 1429.62184
[13] Cribari-Neto, F.; Zarkos, S.G., Heteroskedasticity-consistent covariance matrix estimation: white’s estimator and the bootstrap, Journal of statistical computation and simulation, 68, 391-411, (2001) · Zbl 0974.62048
[14] Cribari-Neto, F.; Zarkos, S.G., Leverage-adjusted heteroskedastic bootstrap methods, Journal of statistical computation and simulation, 74, 215-232, (2004) · Zbl 1048.62063
[15] Croux, C., Dhaene, G., Hoorelbeke, D., 2003. Robust standard errors for robust estimators. Discussion Papers Series 03.16. KU, Leuven, CES. · Zbl 1093.62021
[16] Croux, C.; Haesbroeck, G., Influence function and efficiency of the minimum covariance determinant scatter matrix estimator, Journal of multivariate analysis, 71, 161-190, (1999) · Zbl 0946.62055
[17] Draper, N.R.; Smith, H., Applied regression analysis, (1998), John Wiley New York · Zbl 0158.17101
[18] Furno, M., A robust heteroskedasticity consistent covariance matrix estimator, Statistics, 30, 201-219, (1997) · Zbl 0915.62018
[19] Gilley, O.W.; Pace, R.K., On the Harrison and rubinfeld data, Journal of environmental economics and management, 31, 403-405, (1996) · Zbl 0925.90112
[20] Giloni, A.; Simonoff, J.S.; Sengupta, B., Robust weighted LAD regression, Computational statistics and data analysis, 50, 3124-3140, (2006) · Zbl 1445.62163
[21] Greene, W., Econometric methods, (1997), Prentice-Hall Englewood Cliffs, NJ
[22] Hallin, M.; Mizera, I., Sample heterogeneity and \(M\)-estimation, Journal of statistical planning and inference, 93, 139-160, (2001) · Zbl 0965.62020
[23] Harrison, D.; Rubinfeld, D.L., Hedonic housing prices and the demand for Clean air, Journal of environmental economics and management, 5, 81-102, (1978) · Zbl 0375.90023
[24] Harvey, A.C., Estimating regression models with multiplicative heteroscedasticity, Econometrika, 38, 375-386, (1976) · Zbl 0333.62040
[25] Harville, D.A., Bayesian inference for variance components using only error contrasts, Biometrika, 61, 383-385, (1974) · Zbl 0281.62072
[26] Hubert, M.; Rousseeuw, P.J., Robust regression with both continuous and binary regressors, Journal of statistical planning and inference, 57, 153-163, (1997) · Zbl 0900.62174
[27] Kempthorne, P.J.; Mendel, M.B., Comment, Journal of the American statistical association, 85, 647-648, (1990)
[28] Koenker, R.; Bassett, G., Regression quantiles, Econometrica, 46, 211-244, (1978)
[29] Long, J.S.; Ervin, L.H., Using heteroskedasticity consistent standard errors in the linear regression model, American Statistician, 54, 217-224, (2000)
[30] MacKinnon, J.G.; White, H., Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties, Journal of econometrics, 29, 305-325, (1985)
[31] Maronna, R.A.; Yohai, V.J., Robust regression with both continuous and categorical predictors, Journal of statistical planning and inference, 89, 197-214, (2000) · Zbl 0954.62030
[32] Patterson, H.D.; Thompson, R., Recovery of inter-block information when block sizes are unequal, Biometrika, 54, 545-554, (1971) · Zbl 0228.62046
[33] Rousseeuw, P.J., Least Median of squares regression, Journal of the American statistical association, 79, 871-880, (1984) · Zbl 0547.62046
[34] Rousseeuw, P.J.; Leroy, A.M., Robust regression and outlier detection, (1987), John Wiley New York · Zbl 0711.62030
[35] Rousseeuw, P.J.; van Driessen, K., A fast algorithm for the minimum covariance determinant estimator, Technometrics, 41, 212-223, (1999)
[36] Rousseeuw, P.J.; van Zomeren, B.C., Unmasking multivariate outliers and leverage points (with discussion), Journal of the American statistical association, 85, 633-651, (1990)
[37] Smyth, G.K., An efficient algorithm for REML in heteroscedastic regression, Journal of computational and graphical statistics, 11, 836-847, (2002)
[38] Verbyla, A.P., Modelling variance heterogeneity: residual maximum likelihood and diagnostics, Journal of the royal statistical society. series B, 55, 493-508, (1993) · Zbl 0783.62051
[39] Wei, B.-C.; Hickernell, F.J., Regression transformation diagnostics for explanatory variables, Statistica sinica, 6, 433-454, (1996) · Zbl 0881.62078
[40] Weisberg, S., Applied linear regression, (1980), John Wiley New York · Zbl 0529.62054
[41] White, H., A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity, Econometrica, 48, 817-838, (1980) · Zbl 0459.62051
[42] Woodruff, D.L.; Rocke, D.M., Computable robust estimation of multivariate location and shape in high dimension using compound estimators, Journal of the American statistical association, 89, 888-896, (1994) · Zbl 0825.62485
[43] Yohai, V.J., High breakdown-point and high efficiency estimates for regression, The annals of statistics, 15, 642-665, (1987) · Zbl 0624.62037
[44] Zeileis, A., Econometric computing with HC and HAC covariance matrix estimators, Journal of statistical software, 11, 1-17, (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.