A stabilized finite element method for the numerical simulation of multi-ion transport in electrochemical systems. (English) Zbl 1253.76054

Summary: A stabilized finite element method for the simulation of instationary and stationary multi-ion transport in dilute electrolyte solutions is presented. The proposed computational approach accounts for all three ion-transport phenomena, that is, convection, diffusion and migration, as well as nonlinear electrode kinetics boundary conditions. The governing equations form a set of coupled nonlinear partial differential equations subject to an electroneutrality condition. The latter establishes an algebraic constraint to the problem formulation. Derived from the variational multiscale method, we introduce stabilization terms which prevent potential spurious oscillations arising in the convection-dominated case when a standard Galerkin finite element method is used. For various numerical examples, it is demonstrated that the proposed computational method is robust and provides accurate results.


76M10 Finite element methods applied to problems in fluid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
76V05 Reaction effects in flows


UMFPACK; Echem++
Full Text: DOI


[1] Newman, J.; Thomas-Alyea, K.E., Electrochemical systems, Third ed.,, (2004), John Wiley & Sons Hoboken
[2] Kwok, Y.-K.; Wu, C.C.K., Fractional step algorithm for solving a multi-dimensional diffusion-migration equation, Numer. methods partial differ. equat., 11, 389-397, (1995) · Zbl 0838.65126
[3] Bortels, L.; Deconinck, J.; Van den Bossche, B., The multi-dimensional upwinding method as a new simulation tool for the analysis of multi-ion electrolytes controlled by diffusion, convection and migration. part 1. steady state analysis of a parallel plane flow channel, J. electroanal. chem., 404, 15-26, (1996)
[4] Georgiadou, M.; diffusion, Finite-difference simulation of multi-ion electrochemical systems governed by, Migration and convection, J. electrochem. soc., 144, 2732-2739, (1997)
[5] Georgiadou, M., Modeling current density distribution in electrochemical systems, Electrochim. acta, 48, 4089-4095, (2003)
[6] Barak-Shinar, D.; Rosenfeld, M.; Abboud, S., Numerical simulations of mass-transfer processes in 3D model of electrochemical sensor, J. electrochem. soc., 151, H261-H266, (2004)
[7] Buoni, M.; Petzold, L., An algorithm for simulation of electrochemical systems with surface-bulk coupling strategies, J. comput. phys., 229, 379-398, (2010) · Zbl 1181.78015
[8] Henley, I.E.; Fisher, A.C., Computational electrochemistry: the simulation of voltammetry in microchannels with low conductivity solutions, J. phys. chem. B, 107, 6579-6585, (2003)
[9] Samson, E.; Marchand, J.; Robert, J.-L.; Bournazel, J.-P., Modelling ion diffusion mechanisms in porous media, Int. J. numer. methods engrg., 46, 2043-2060, (1999) · Zbl 0958.76086
[10] Low, C.; Roberts, E.; Walsh, F., Numerical simulation of the current, potential and concentration distributions along the cathode of a rotating cylinder hull cell, Electrochim. acta, 52, 3831-3840, (2007)
[11] Ludwig, K.; Morales, I.; Speiser, B., Echem++ - an object-oriented problem solving environment for electrochemistry. part 6. adaptive finite element simulations of controlled-current electrochemical experiments, J. electroanal. chem., 608, 102-110, (2007)
[12] A. Prohl, M. Schmuck, Convergent finite element discretizations of the Navier-Stokes-Nernst-Planck-Poisson system, ESAIM: M2AN 44, 2010, 531-571. · Zbl 1247.76052
[13] Bauer, G.; Gravemeier, V.; Wall, W.A., A 3d finite element approach for the coupled numerical simulation of electrochemical systems and fluid flow, Int. J. num. meth. engrg., 86, 1339-1359, (2011) · Zbl 1235.76060
[14] Brooks, A.N.; Hughes, T.J., Streamline upwind/petrov – galerkin formulations for convection dominated flows with particular emphasis on the incompressible navier – stokes equations, Comput. methods appl. mech. engrg., 32, 199-259, (1982) · Zbl 0497.76041
[15] Hughes, T.; Scovazzi, G.; Franca, L., Multiscale and stabilized methods, (), 5-59
[16] Hughes, T.J.R., Multiscale phenomena: green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods, Comput. methods appl. mech. engrg., 127, 387-401, (1995) · Zbl 0866.76044
[17] Gravemeier, V.; Gee, M.W.; Kronbichler, M.; Wall, W.A., An algebraic variational multiscale-multigrid method for large eddy simulation of turbulent flow, Comput. methods appl. mech. engrg., 199, 853-864, (2010) · Zbl 1406.76027
[18] Gravemeier, V.; Wall, W.A., Residual-based variational multiscale methods for laminar transitional and turbulent variable-density flow at low Mach number, Int. J. numer. meth. fluids, 65, 1260-1278, (2011) · Zbl 1429.76079
[19] Gravemeier, V.; Wall, W.A., An algebraic variational multiscale-multigrid method for large-eddy simulation of turbulent variable-density flow at low Mach number, J. comput. phys., 229, 6047-6070, (2010) · Zbl 1425.76101
[20] Ganjoo, D.; Tezduyar, T.; Goodrich, W., A new formulation for numerical simulation of electrophoresis separation processes, Comput. methods appl. mech. engrg., 75, 515-530, (1989) · Zbl 0687.76115
[21] G.L. Hennigan, R.J. Hoekstra, J.P. Castro, D.A. Fixel, J.N. Shadid, Simulation of neutron radiation damage in silicon semiconductor devices, Technical Report SAND2007-7157, Sandia National Laboratories, 2007.
[22] Lin, P.T.; Shadid, J.N.; Sala, M.; Tuminaro, R.S.; Hennigan, G.L.; Hoekstra, R.J., Performance of a parallel algebraic multilevel preconditioner for stabilized finite element semiconductor device modeling, J. comput. phys., 228, 6250-6267, (2009) · Zbl 1175.82077
[23] Bazant, M.Z.; Chu, K.T.; Bayly, B.J., Current-voltage relations for electrochemical thin films, SIAM J. appl. math., 65, 1463-1484, (2005) · Zbl 1092.34005
[24] Gresho, P.; Sani, R., Incompressible flow and the finite element method, (1998), Wiley Chichester · Zbl 0941.76002
[25] Codina, R.; Principe, J.; Guasch, O.; Badia, S., Time dependent subscales in the stabilized finite element approximation of incompressible flow problems, Comput. methods appl. mech. engrg., 196, 2413-2430, (2007) · Zbl 1173.76335
[26] Gamnitzer, P.; Gravemeier, V.; Wall, W.A., Time-dependent subgrid scales in residual-based large eddy simulation of turbulent channel flow, Comput. methods appl. mech. engrg., 199, 819-827, (2010) · Zbl 1406.76026
[27] Taylor, C.A.; Hughes, T.J.R.; Zarins, C.K., Finite element modeling of blood flow in arteries, Comput. methods appl. mech. engrg., 158, 155-196, (1998) · Zbl 0953.76058
[28] Hughes, T., The finite element method: linear static and dynamic finite element analysis, (1987), Prentice-Hall Englewood Cliffs, NJ · Zbl 0634.73056
[29] Hauke, G., A simple subgrid scale stabilized method for the advection-diffusion-reaction equation, Comput. methods appl. mech. engrg., 191, 2925-2947, (2002) · Zbl 1005.76057
[30] Gravemeier, V.; Wall, W.A., Variational multiscale methods for premixed combustion based on a progress-variable approach, Combust. flame, 158, 1160-1170, (2011)
[31] Davis, T.A., Algorithm 832: umfpack v4.3 - an unsymmetric-pattern multifrontal method, ACM trans. math. softw., 30, 196-199, (2004) · Zbl 1072.65037
[32] Benzi, M.; Golub, G.H.; Liesen, J., Numerical solution of saddle point problems, Acta numer., 14, 1-137, (2005) · Zbl 1115.65034
[33] Gresho, P.M.; Lee, R.L.; Sani, R.L.; Maslanik, M.K.; Eaton, B.E., The consistent Galerkin FEM for computing derived boundary quantities in thermal and or fluids problems, Int. J. numer. meth. fluids, 7, 371-394, (1987) · Zbl 0629.76095
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.