×

zbMATH — the first resource for mathematics

Two-fluid pressure-driven channel flow with wall deposition and ageing effects. (English) Zbl 1254.76079
Summary: Two-fluid, stratified pressure-driven channel flow is studied in the limit of small viscosity ratios. Cases are considered in which the core fluid undergoes phase separation that results in the ‘precipitation’ of a distinct phase and the formation of a wall layer; these situations are common in the oil industry where ‘fouling’ deposits are formed during the flow. The thickness of this layer increases as a result of continual deposition through Stefan-like fluxes, which are related to the phase behaviour of the core fluid through a chemical equilibria model that treats the fluid as a bi-component mixture. The deposit also undergoes an ‘ageing’ process whereby its viscosity increases due to the build-up of internal structure; the latter is modelled here via a Coussot-type relation. Lubrication theory is used in the wall layer and an integral balance in the core fluid wherein inertial effects are important. By choosing appropriate semi-parabolic velocity and temperatures closures for the laminar flow in the channel core, and a closure relation for the wall layer rheology, evolution equations are derived that describe the flow dynamics. In the presence of ageing but absence of deposition, it is demonstrated how the time-varying deposit rheology alters the wave dynamics; for certain parameter ranges, these effects can give rise to the formation of steep waves and what appears to be finite-time ‘blow-up’. With both ageing and deposition, the spatio-temporal evolution of the deposit is shown together with the increase in the deposition rate with increasing temperature difference between the wall and the inlet.
MSC:
76D50 Stratification effects in viscous fluids
76A20 Thin fluid films
Software:
EPDCOL
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Weinstein SJ, Ruschak KJ (2004) Coating flows. Annu Rev Fluid Mech 36: 29–53 · Zbl 1081.76009 · doi:10.1146/annurev.fluid.36.050802.122049
[2] Stone HA, Strook AD, Ajdari A (2004) Engineering flows in small devices. Annu Rev Fluid Mech 36: 381–411 · Zbl 1076.76076 · doi:10.1146/annurev.fluid.36.050802.122124
[3] Squires TM, Quake SR (2005) Micro-fluidics: fluid physics at the nanoliter scale. Rev Mod Phys 77: 977–1024 · doi:10.1103/RevModPhys.77.977
[4] Grotberg JB (1994) Pulmonary flow and transport phenomena. Annu Rev Fluid Mech 26: 529–571 · Zbl 0802.76100 · doi:10.1146/annurev.fl.26.010194.002525
[5] Grotberg JB (2001) Respiratory fluid mechanics and transport processes. Annu Rev Biomed Eng 3: 421–457 · doi:10.1146/annurev.bioeng.3.1.421
[6] Shyy W, Francois M, Udaykumar HS, N’dri N, Tran-Son-Tay R (2001) Moving boundaries in micro-scale biofluid dynamics. Appl Mech Rev 54: 405–453 · doi:10.1115/1.1403025
[7] Gallez D, Coakley WT (1996) Far-from-equilibrium phenomena in bioadhesion processes. Heterog Chem Rev 3: 443–475 · doi:10.1002/(SICI)1234-985X(199612)3:4<443::AID-HCR71>3.0.CO;2-2
[8] Oron A, Davis SH, Bankoff SG (1997) Long-scale evolution of thin liquid films. Rev Mod Phys 69: 931 · doi:10.1103/RevModPhys.69.931
[9] Myers TG (1998) Thin films with high surface tension. SIAM Rev 40: 441–462 · Zbl 0908.35057 · doi:10.1137/S003614459529284X
[10] Craster RV, Matar OK (2009) Dynamics and stability of thin liquid films. Rev Mod Phys 81: 1131–1198 · doi:10.1103/RevModPhys.81.1131
[11] Ramirez-Jaramillo E, Lira-Galeana C, Manero O (2006) Modelling asphaltene deposition in production pipelines. Energy Fuels 20: 1184–1196 · doi:10.1021/ef050262s
[12] Boek ES, Ladva HK, Crawshaw JP, Padding JT (2008) Deposition of colloidal asphaltene in capillary flow: experiments and mesoscopic simulation. Energy Fuels 22: 805–813 · doi:10.1021/ef700670f
[13] Liu AJ, Nagel SR (1998) Jamming is not just cool any more. Nature 396: 21 · doi:10.1038/23819
[14] Coussot P, Roussel N, Jarny S, Chanson H (2005) Continuous or catastrophic solid–liquid transition in jammed systems. Phys Fluids 17: 011704 · Zbl 1187.76106 · doi:10.1063/1.1823531
[15] Roussel N, Roy RL, Coussot P (2004) Thixotropy modelling at local and macroscopic scales. J Non-Newton Fluid Mech 117: 85 · Zbl 1130.76310 · doi:10.1016/j.jnnfm.2004.01.001
[16] Huynh HT, Roussel N, Coussot P (2005) Aging and free surface flow of a thixotropic fluid. Phys Fluids 17: 033101 · Zbl 1187.76229 · doi:10.1063/1.1844911
[17] Coussot P, Nguyen QD, Huynh HT, Bonn D (2002) Avalanche behaviour in yield stress fluids. Phys Rev Lett 88: 175501 · doi:10.1103/PhysRevLett.88.175501
[18] Coussot P, Nguyen QD, Huynh HT, Bonn D (2002) Viscosity bifurcation in thixotropic, yielding fluids. J Rheol 46: 573 · doi:10.1122/1.1459447
[19] Svendesn JA (1993) Mathematical modelling of wax deposition in oil pipeline systems. AIChE J 39: 1377–1388 · doi:10.1002/aic.690390815
[20] Shkadov VY (1967) Wave flow regimes of a thin layer of viscous fluid subject to gravity. Fluid Dyn Res 2: 21–34
[21] Ruyer-Quil C, Manneville P (1998) Modelling film flows down inclined planes. Eur Phys J B 6: 277–292 · doi:10.1007/s100510050550
[22] Matar OK, Lawrence CJ, Sisoev GM (2005) The flow of a thin film over a spinning disc: hydrodynamics and mass transfer. Phys Fluids 17: 052102 · Zbl 1187.76336 · doi:10.1063/1.1891814
[23] Ruyer-Quil C, Scheid B, Kalliadasis S, Velarde MG, Zeytounian RK (2005) Thermocapillary long waves in a liquid film flow. Part 1. Low-dimensional formulation. J Fluid Mech 538: 199–222 · Zbl 1080.76009 · doi:10.1017/S0022112005005422
[24] Scheid B, Ruyer-Quil C, Kalliadasis S, Velarde MG, Zeytounian RK (2005) Thermocapillary long waves in a liquid film flow. Part 2. Linear stability and nonlinear waves. J Fluid Mech 2538: 223–244 · Zbl 1080.76010 · doi:10.1017/S0022112005005446
[25] Matar OK, Lawrence CJ, Sisoev GM (2007) Interfacial dynamics in pressure-driven two-layer laminar channel flow with high viscosity ratios. Phys Rev E 75: 056314 · doi:10.1103/PhysRevE.75.056314
[26] Trevelyan PMJ, Kalliadasis S (2004) Dynamics of a reactive falling film at large Peclet numbers. II. Nonlinear waves far from criticality: integral-boundary-layer approximation. Phys Fluids 16: 3209–3226 · Zbl 1186.76536 · doi:10.1063/1.1767835
[27] Trevelyan PMJ, Scheid B, Ruyer-Quil C, Kalliadasis S (2007) Heated falling films. J Fluid Mech 592: 295–334 · Zbl 1128.76006 · doi:10.1017/S0022112007008476
[28] Kapitza PL (1948) Wave flow of a thin viscous fluid layer. I. Free flow. J Exp Theor Phys 18: 3–20
[29] Scheid B, Ruyer-Quil C, Manneville P (2006) Wave patterns in film flows: modelling and three-dimensional waves. J Fluid Mech 562: 183–222 · Zbl 1157.76307 · doi:10.1017/S0022112006000978
[30] Delhaye JM (1974) Jump conditions and entropy sources in two-phase systems. Local instant formulation. Int J Multiph Flow 1: 395–409 · Zbl 0358.76066 · doi:10.1016/0301-9322(74)90012-3
[31] Burelbach JP, Bankoff SG, Davis SH (1988) Nonlinear stability of evaporating/condensing liquid films. J Fluid Mech 195: 463 · Zbl 0653.76035 · doi:10.1017/S0022112088002484
[32] Zadražil A, Stepanek F, Matar OK (2006) Droplet spreading, imbibition and solidification on porous media. J Fluid Mech 562: 1–33 · Zbl 1157.76397 · doi:10.1017/S0022112006000875
[33] Sileri D, Ding H, Matar OK (2010) Direct numerical simulations of channel flows with phase separation and ageing effects (in preparation)
[34] Keast P, Muir PH (1991) Algorithm 688 EPDCOL–a more efficient PDECOL code. ACM Trans Math Softw 17: 153–166 · Zbl 0900.65270 · doi:10.1145/108556.108558
[35] Zhang YL, Craster RV, Matar OK (2003) Analysis of tear film rupture: effect of non-Newtonian rheology. J Colloid Interface Sci 262: 130–148 · doi:10.1016/S0021-9797(03)00200-5
[36] Kumar S, Matar OK (2004) Dewetting of thin liquid films near soft elastomeric layers. J Colloid Interface Sci 273: 581–588 · doi:10.1016/j.jcis.2003.11.044
[37] Balmforth NJ, Bush JWM, Craster RV (2005) Roll waves on flowing cornstarch suspensions. Phys Lett A 338: 479–484 · Zbl 1136.76373 · doi:10.1016/j.physleta.2005.02.071
[38] Duprat C, Giorgiutti-Dauphine F, Tseluiko D, Saprykin S, Kalliadasis S (2009) Liquid film coating a fiber as a model system for the formation of bound states in active dispersive-dissipative nonlinear media. Phys Rev Lett 103: 234501 · doi:10.1103/PhysRevLett.103.234501
[39] Benney DJ (1966) Long waves on liquid films. J Math Phys 45: 150–155 · Zbl 0148.23003
[40] Ruyer-Quil C, Manneville P (2000) Improved modelling of flows down inclined planes. Eur Phys J B 15: 357–369 · doi:10.1007/s100510051137
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.