zbMATH — the first resource for mathematics

On the analytic equivalence of curves. (English) Zbl 0612.14020
Let R be the algebra \(k[[X_ 1,...,X_ N]]\) over an algebraically closed field k, \((k^ N,0)\) the k-scheme Spec(R), and \(X=Spec(R/I)\) a curve of \((k^ N,0)\) where I is an ideal of R. The n-th truncation \(\bar X{}_ n\) of X is the closed zero-dimensional subscheme of \((k^ N,0)\) given by \(\bar X{}_ n=Spec(R/I+(X_ 1,...,X_ N)^ n)\). Then, there exists an integer t(X) such that the analytic type of X is determined by its n-truncations \(\bar X{}_ n\) for all \(n\geq t(X)\). This fact is shown by H. Hironaka [Notes of the Woods Hole Seminar in Algebraic Geometric (1964); see also Arithmetical algebraic Geom., Proc. Conf. Purdue Univ. 1963, 153-200 (1965; Zbl 0147.205)] for more general subschemes X, not necessarily curves. In the above curve case, the author gives the explicit value of t(X) in terms of the Milnor number of X in this paper.
Reviewer: S.Koizumi

14H05 Algebraic functions and function fields in algebraic geometry
Full Text: DOI
[1] DOI: 10.1007/BF01361027 · Zbl 0136.20801 · doi:10.1007/BF01361027
[2] DOI: 10.2307/1970486 · Zbl 0122.38603 · doi:10.2307/1970486
[3] Casas, Collect. Math. 25 pp 3– (1974)
[4] Serre, Groupes Alg?briques et Corps de Classes (1959) · Zbl 0097.35604
[5] DOI: 10.1112/jlms/s2-10.4.471 · Zbl 0305.13017 · doi:10.1112/jlms/s2-10.4.471
[6] DOI: 10.1016/0021-8693(80)90136-2 · Zbl 0449.13008 · doi:10.1016/0021-8693(80)90136-2
[7] Northcott, Math. Proc. Cambridge Philos. Soc. 53 pp 43– (1957)
[8] Nobile, Illinois J. Math. 22 pp 476– (1978)
[9] Matlis, 1-Dimensional Cohen?Macaulay Rings (1977)
[10] Samuel, J. Math. Pures Appl. 35 pp 1– (1956)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.